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Switched Systems with Multiple Equilibria Under
Disturbances: Boundedness and Practical Stability

Sushant Veer and Ioannis Poulakakis

Abstract—This paper addresses robustness to external distur-
bances of switched discrete and continuous systems with multiple
equilibria. First, we prove that if each subsystem of the switched
system is Input-to-State Stable (ISS), then under switching signals
that satisfy an average dwell-time bound, the solutions are
ultimately bounded within a compact set. The size of this set
varies monotonically with the supremum norm of the disturbance
signal. These results generalize existing ones in the common equi-
librium case to accommodate multiple equilibria. Then, we relax
the (global) ISS conditions to consider equilibria that are locally
exponentially stable (LES), and we establish practical stability for
such switched systems under disturbances. Our motivation for
studying this class of switched systems arises from certain motion
planning problems in robotics, where primitive movements, each
corresponding to an equilibrium point of a dynamical system,
must be composed to obtain more complex motions. As a concrete
example, we consider the problem of realizing safe adaptive
locomotion of a 3D biped under persistent external forcing by
switching among motion primitives characterized by LES limit
cycles. The results of this paper, however, are relevant to a much
broader class of applications, in which composition of different
modes of behavior is required to accomplish a task.

Index Terms—Switched systems with multiple equilibria;
input-to-state stability; practical stability; motion planning.

I. INTRODUCTION

A switched system is characterized by a family of dynamical
systems wherein only one member is active at a time, as
governed by a switching signal. From the perspective of
control synthesis, switched systems allow stitching individual
controllers under a single framework by viewing the dynamics
produced by each controller as an individual system. This gives
rise to a convenient and modular control strategy that allows
the use of pre-designed controllers for generating behaviors
richer than what an individual controller is capable of. Owing
to these factors, switched systems have been widely used in
a broad range of applications—such as power electronics [1],
automotive control [2], robotics [3], and air traffic control [4].

A significant amount of research has been directed towards
the stability and robustness of switched systems. Stability of
switched linear systems was studied in [5] by the construction
of a common Lyapunov function which decreases monotoni-
cally despite switching. In the absence of a common Lyapunov
function, the notion of multiple Lyapunov functions that are
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allowed to increase intermittently as long as there is an overall
reduction, was proposed in [6]. Instead of dealing with the
construction of special classes of Lyapunov functions, [7]
proved that the stability properties of the individual subsystems
can be translated to the switched system when switching is
sufficiently slow in the sense that the switching signal satisfies
an average dwell-time bound. The notion of average dwell
time was further exploited in [8] to study the input-to-state
stability (ISS) of switched continuous systems. Further, [9]
and [10] relax the ISS requirement on each subsystem for
switching under disturbances. Detailed surveys of results in
switched systems can be found in [11]–[13]; it is emphasized,
however, that the aforementioned papers consider switching
among systems that share a common equilibrium, as does the
majority of the switched systems literature.

Various applications demand switching among systems that
do not share a common equilibrium—such as planning mo-
tions of legged [14], [15] and aerial [16] robots, cooperative
manipulation among multiple robotic arms [17], power control
in multi-cell wireless networks [18], and models for non-
spiking of neurons [19]. Such systems are referred to in the
literature as switched systems with multiple equilibria.1 To
study the behavior of these systems, [18] and [20] established
boundedness of the state for switching signals that satisfy
an average dwell-time and a dwell-time bound, respectively.
The notion of modal dwell-time was introduced in [21],
which provided switch-dependent dwell-time bounds, while
[22] and [23] established boundedness of solutions via prac-
tical stability. The dwell-time bound of [20] was extended to
switched discrete systems in [15] and to switched continuous
systems with invariant sets in [16]. Yet, papers that deal with
multiple equilibria do not study the effect of switching in
the presence of disturbances. Conversely, work that considers
switching under disturbances is restricted to systems that share
a common equilibrium. In the present paper, we address this
gap in the literature by studying discrete and continuous
switched systems with multiple equilibria under disturbances.

Our interest in switched systems with multiple equilibria
stems from their application in certain motion planning and
control problems in robotics that require switching among
different modes of behavior [24], [25]. As a concrete example,
consider dynamically-stable legged robots, in which the ability
to switch among a collection of limit-cycle gait primitives
enriches the repertoire of robot behaviors. This ability provides
the additional flexibility needed for navigating amidst obsta-
cles [14], [15], realizing gait transitions [26], [27], adapting

1To clarify terminology, “switched systems with multiple equilibria” refers
to switching among subsystems each of which exhibits a unique equilibrium
which may not coincide with the equilibrium of another subsystem.
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to external commands [28]–[30], or achieving robustness to
disturbances [31], [32]. In this case, each limit-cycle gait
primitive corresponds to a distinct equilibrium point of a
discrete dynamical system that arises from the corresponding
Poincaré map—or forced Poincaré map [33] if disturbances are
present. Hence, composing gait primitives can be formulated
as a switched discrete system with multiple equilibria, as
in [14], [15], [34]–[36]. The present paper provides theoretical
tools relevant to ensuring robustness for such systems. It is
worth mentioning that these tools can be applied to robust
motion planning via the composition of multiple (distinct)
equilibrium behaviors for other classes of dynamically-moving
robots as well—examples include aerial robots with fixed [37]
or flapping [38] wings, snake robots [39], and ballbots [40].

This paper studies the effect of disturbances on switched
discrete and continuous systems with multiple (distinct) equi-
libria. It is proved in Theorems 1 and 2 that if each subsystem
has an ISS equilibrium and the switching signal satisfies
an average dwell-time constraint, then the solutions of the
switched system are ultimately bounded within an explicitly
characterized compact set. In addition, motivated by appli-
cations, we provide Theorems 3 and 4 that relax the ISS
conditions to consider equilibria that are locally exponentially
stable (LES) and establish safety guarantees in the form of
practical stability2 under average dwell-time switching signals
and disturbances. A notable aspect of these results is that
their application does not require explicit knowledge of the
disturbances, thus allowing for the design of switching policies
that ensure robustness using only local Lyapunov functions. To
demonstrate the relevance of these results to practical applica-
tions, we consider the problem of safe adaptive locomotion of
a 3D biped by switching among limit-cycle gait primitives; this
example is representative of a class of tasks in which a system
needs to adapt its behavior to (possibly large) variations in the
environment within which it operates.

With respect to prior literature, the contribution of this paper
is twofold. From a theoretical perspective, it extends current
results on boundedness and practical stability of switched
systems with multiple equilibria, e.g., [15], [16], [19]–[23],
to explicitly consider the effect of disturbances. Furthermore,
it naturally generalizes existing ISS results for the common
equilibrium case; indeed, when the equilibria of the individual
subsystems coalesce, ISS of the switched system can be
recovered as a simple consequence of Theorems 1 and 2. From
a practical perspective, this paper extends current approaches
to motion planning of dynamic robots, by providing safety
guarantees for sequentially composing dynamic motion primi-
tives under disturbances. This is unlike existing literature [24],
[25], [43], [44], with the only exception being [37], which
though requires knowledge of the disturbed dynamics. On the
contrary, the results presented here provide safety guarantees
in the presence of disturbances using the dynamics in the

2In practice, one often encounters systems that do not exhibit equilibria
or their equilibria are not stable in the sense of Lyapunov; however, their
solutions still evolve in a region where they could “safely” operate, rendering
such systems stable in a “practical sense.” This notion of stability is formalized
as practical stability and has appeared as early as 1961 in LaSalle and
Lefschetz’s book [41]; see [42] for further details.

absence of disturbances. Preliminary results associated with
this work have appeared in [29], [45].

Notation: R and Z denote the real and integer numbers, and
R+, Z+ the non-negative reals and integers, respectively. The
Euclidean norm is denoted by ‖ · ‖ and Bδ(x) ⊂ Rn denotes
an open-ball (Euclidean) of radius δ > 0 centered at x ∈ Rn.
Let A ⊆ Rn, then

◦
A denotes the interior while A denotes

the closure of A, respectively. The index k ∈ Z+ represents
discrete time. The discrete-time disturbance d : Z+ → Rm is
a sequence {dk}k∈Z+

with dk ∈ Rm for k ∈ Z+. The norm of
d is ‖d‖∞ := supk∈Z+

‖dk‖. Let t ∈ R+ represent continuous
time. The disturbance d : R+ → Rm that acts in continuous
time is assumed to be a piecewise continuous signal with norm
‖d‖∞ := supt≥0 ‖d(t)‖. Abusing notation, we use d, ‖ · ‖∞
and D for both discrete- and continuous-time disturbances.
No ambiguity arises as it will always be clear from context
whether the signal is discrete or continuous. Finally, a function
α : R+ → R+ is of class K∞ if it is continuous, strictly
increasing, α(0) = 0, and lims→∞ α(s) = ∞. A function
β : R+ ×R+ → R+ is of class KL if it is continuous, β(·, t)
is of class K∞ for any fixed t ≥ 0, β(s, ·) is strictly decreasing,
and limt→∞ β(s, t) = 0 for any fixed s ≥ 0; see [46].

II. SWITCHED SYSTEMS WITH MULTIPLE EQUILIBRIA:
ISS EQUILIBRIA

This section introduces the classes of discrete and con-
tinuous switched systems that are of interest in this work,
and provides the main theorems that establish boundedness of
solutions under disturbances for sufficiently slow switching.

A. Switched Discrete Systems
Let P be a finite index set and consider the family of

discrete-time systems

xk+1 = fp(xk, dk), p ∈ P , (1)

where x ∈ Rn is the state and dk ∈ Rm is the value at time
k of the discrete disturbance signal d, which belongs to the
set of bounded disturbances D := {d : Z+ → Rm | ‖d‖∞ <
∞}. It is assumed that, for each p ∈ P , the mapping fp :
Rn×Rm → Rn is continuous in its arguments, and that there
exists a unique x∗p ∈ Rn satisfying x∗p = fp(x

∗
p, 0). Note that

the vast majority of the relevant literature assumes that all
subsystems fp share a common equilibrium point; here, we
relax this assumption, and allow for x∗p 6= x∗q when p 6= q.

To state the main result, we will require each system in the
family (1) to be input-to-state stable, as defined below.

Definition 1 (Adapted from [47]). The equilibrium point x∗p
of system fp in (1) is input-to-state stable (ISS) if there exists
a class KL function β and a class K∞ function α such that
for any initial state x0 ∈ Rn and any bounded input d ∈ D,
the solution xk exists for all k ≥ 0 and satisfies

‖xk − x∗p‖ ≤ β(‖x0 − x∗p‖, k) + α(‖d‖∞) . (2)

Let σ : Z+ → P be a switching signal, mapping the discrete
time k to the index σ(k) ∈ P of the subsystem that is active
at k. This gives rise to a discrete switched system of the form

xk+1 = fσ(k)(xk, dk) . (3)
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We are interested in establishing boundedness and ultimate
boundedness of the solutions of (3) under bounded distur-
bances, provided that the switching signal is sufficiently “slow
on average.” Definition 2 below makes this notion precise.

Definition 2 (Adapted from [48]). A switching signal σ(k)
has average dwell-time Na > 0 if the number Nσ(k, k) ∈ Z+

of switches over any discrete-time interval [k, k) ∩ Z+ where
k, k ∈ Z+, satisfies

Nσ(k, k) ≤ N0 +
k − k
Na

, ∀k ≥ k ≥ 0 (4)

where N0 > 0 is a finite constant.

We can now state the main result of this section for discrete
switched systems, and discuss its consequences.

Theorem 1. Consider the switched system (3) and assume
that for each p ∈ P there exists a continuous function Vp :
Rn → R+ such that for all x ∈ Rn and d ∈ D,

αp(‖x− x∗p‖) ≤ Vp(x) ≤ αp(‖x− x∗p‖) , (5)

Vp(fp(x, d)) ≤ λpVp(x) + αp(‖d‖∞) , (6)

where 0 < λp < 1 and αp, αp, αp are class K∞ functions.
Assume further that

lim sup
‖x−x∗

p‖→∞

Vq(x)

Vp(x)
<∞ (7)

for any p, q ∈ P . Then, there exists Na > 0 so that for any
switching signal σ satisfying the average dwell-time constraint
(4) with

N0 ≥ 1 and Na ≥ Na , (8)

and for any x0 ∈ Rn, there exists K ∈ Z+ such that the
solution {xk}k∈Z+ of (3) satisfies:

(i) for all 0 ≤ k < K,

‖xk − x∗σ(k)‖ ≤ β(‖x0 − x∗σ(0)‖, k) + α(‖d‖∞) (9)

for some β ∈ KL and α ∈ K∞;
(ii) for all k ≥ K,

xk ∈M(ω̄) :=
⋃
p∈P
{x ∈ Rn | Vp(x) ≤ ω̄(‖d‖∞)} (10)

where
ω̄(‖d‖∞) := c+ α̃(‖d‖∞) , (11)

for some c > 0 and α̃ ∈ K∞.

Proving Theorem 1 is postponed until Section V-A. Explicit
expressions for the bound Na on the average dwell-time Na,
and for ω̄ in the characterization of the setM(ω̄) are important
in applications, and are given before proofs, in Section III-B.

Let us now briefly discuss some aspects of Theorem 1. First,
note that by [47, Definition 3.2], conditions (5)-(6) imply that
Vp is an ISS-Lyapunov function for the p-th subsystem, which
by [47, Lemma 3.5], entails that the 0-input fixed point of fp is
ISS. Since we are interested in switching among systems from
the family (1), condition (7) is added to ensure that the ratio
of the Lyapunov functions corresponding to the subsystems
involved in switching is bounded. As will be shown in

Section III-A below, (7) essentially implies the existence of
a finite µ > 0 such that Vq(x) ≤ µVp(x) for p, q ∈ P over the
domain of interest, a condition which is common in switched
systems literature; see [11, equation (3.6)], [7, equation (8)],
or [8, equation (9)], for example. Now, with conditions (5)-
(6) and (7) in place, Theorem 1 states that if each system
in the family (1) is ISS, the solution of (3) is uniformly3

bounded and uniformly ultimately bounded within the compact
set M(ω̄) characterized by (10). Furthermore, (10) indicates
that the “size” ofM(ω̄) reduces proportionally with the norm
‖d‖∞ of the disturbance. Note, however, that M(ω̄) does not
collapse to a point when the disturbance signal d vanishes;
indeed, if d = 0, (11) implies that ω̄(0) = c > 0 and the
solutions of (3) are ultimately bounded to the 0-input compact
set M(c) that contains the equilibria x∗p ∈M(c), ∀p ∈ P .

It should be noted that Theorem 1 does not establish ISS for
(3) with respect to the compact setM(c), becauseM(c) is not
positively invariant4 under the 0-input dynamics of (3). In fact,
for suitable switching signals satisfying the requirements of the
theorem, solutions of (3) can be found that start within M(c)
and—while evolving in the absence of the disturbance—
escape fromM(c) before they return toM(c) and be trapped
forever in it; see also Remark 2 in Section V-A below for how
this behavior can emerge. Note also that although the estimate
(9) is reminiscent of (2) in Definition 1, it extends only up to a
finite integer K, and it does not represent point-to-set distance
fromM(c) as establishing set-ISS for (3) would require [49].
However, when all the subsystems in the family (1) share the
same equilibrium, then ISS can be recovered, as the following
corollary shows. Corollary 1 provides the counterpart of [8,
Theorem 3.1] for discrete switched systems.

Corollary 1. Consider (3) with x∗p = 0 for all p ∈ P . Let the
assumptions of Theorem 1 hold, and further assume that

lim sup
‖x‖→0

Vq(x)

Vp(x)
<∞ (12)

for all p, q ∈ P . Then, the system (3) is ISS.

While the setM(ω̄) in Theorem 1 is not positively invariant,
one can identify a (compact) subset Ω1 of initial conditions in
M(c) such that the corresponding solutions never leave Ω2 =
M(ω̄). This property corresponds to the notion of practical
stability with respect to the sets Ω1 and Ω2 [22], [42], and is
made precise by the following definition and corollary.

Definition 3 (Adapted from [42]). The switched system (3) is
practically stable for a disturbance d ∈ D with respect to the
sets Ω1 and Ω2, if x0 ∈ Ω1 implies xk ∈ Ω2 for all k ∈ Z+.

Corollary 2. Under the assumptions of Theorem 1, there exists
a compact set Ω1 ⊂M(c) with x∗p ∈

◦
Ω1 for all p ∈ P , such

that the switched system (3) is practically stable for any d ∈ D
with respect to the sets Ω1 and Ω2 :=M(ω̄).

3The term “uniformly” refers to uniformity over the set of switching signals
that satisfy (4) for N0 ≥ 1 and Na ≥ Na, as required by (8) of Theorem 1.

4In the terminology of [49], M(ω̄) is not a 0-invariant set for (3).



4

B. Switched Continuous Systems
As in Section II-A, let P be a finite index set and consider

the family of continuous-time systems

ẋ(t) = fp(x(t), d(t)), p ∈ P , (13)

where x ∈ Rn is the state of the system and d(t) ∈ Rm is
the value of the continuous-time disturbance signal d at time
t which belongs to the set of bounded disturbances D :=
{d : R+ → Rm | ‖d‖∞ <∞, d piecewise continuous}. It is
assumed that, for each p ∈ P , the vector field fp : Rn×Rm →
Rn is locally Lipschitz in its arguments, and that there exists
a unique x∗p ∈ Rn with 0 = fp(x

∗
p, 0). As in Section II-A, we

allow for x∗p 6= x∗q when p 6= q.
Analogous to Section II-A, we will require each system in

the family (13) to be input-to-state stable, as defined below.

Definition 4 (Adapted from [49]). The equilibrium point x∗p
of system fp in (13) is ISS if there exist a class KL function
β and a class K∞ function α such that for any initial state
x(0) ∈ Rn and any bounded input d ∈ D, the solution x(t)
exists for all t ≥ 0 and satisfies

‖x(t)− x∗p‖ ≤ β(‖x(0)− x∗p‖, t) + α(‖d‖∞) . (14)

Let σ : R+ → P be a switching signal mapping the time
instant t to the index σ(t) ∈ P of the subsystem that is active
at t. It is assumed that σ(t) is right-continuous. The switching
signal gives rise to the continuous-time switched system

ẋ(t) = fσ(t)(x(t), d(t)) . (15)

The solution x(t) := φ(t, x(0), σ(t), d(t)) of (15) is a sequen-
tial concatenation of each subsystem’s solution as governed
by the switching signal. Let {tn}n∈Z+

with tn ∈ R+ be a
strictly monotonically increasing sequence of switching times.
Clearly, continuity of fp(x, d) and piecewise continuity of d(t)
imply that x(t) is continuous over (tn, tn+1), i.e., between
subsequent switches. Furthermore, for any tn, the subsystem
fσ(tn) that is switched in and is active over [tn, tn+1) is
initialized by x(tn) = limt↗tn x(t) ensuring that x(t) is
continuous at tn. Hence, x(t) is continuous for all t ≥ 0.

As in the discrete-time case, the main result of this section is
stated for switching signals σ with sufficiently slow switching
on average; the following definition formalizes this notion.

Definition 5 (Adapted from [7]). A switching signal σ(t) has
average dwell-time Na > 0 if the number Nσ(t, t) ∈ Z+ of
switches over any interval [t, t) ⊂ R+ satisfies

Nσ(t, t) ≤ N0 +
t− t
Na

, ∀t ≥ t ≥ 0 (16)

where N0 > 0 is a finite constant.

We are now ready to state the main result of this section
for switched continuous systems.

Theorem 2. Consider the switched system (15) and assume
that for each p ∈ P there exists a continuously differentiable
function Vp : Rn → R+ such that for all x ∈ Rn and d ∈ D,

αp(‖x− x∗p‖) ≤ Vp(x) ≤ αp(‖x− x∗p‖) , (17)
∂Vp
∂x

fp(x, d) ≤ −λpVp(x) + αp(‖d‖∞) , (18)

where λp > 0 and αp, αp, αp are class K∞ functions. Assume
further that

lim sup
‖x−x∗

p‖→∞

Vq(x)

Vp(x)
<∞ (19)

for p, q ∈ P . Then, there exists Na > 0 so that for any
switching signal σ satisfying the average dwell-time constraint
(16) with

N0 ≥ 1 and Na ≥ Na , (20)

and for any x(0) ∈ Rn, there exists T ∈ R+ such that the
solution x(t) := φ(t, x(0), σ(t), d(t)) of (15) satisfies:

(i) for all 0 ≤ t < T ,

‖x(t)−x∗σ(t)‖ ≤ β(‖x(0)−x∗σ(0)‖, t) +α(‖d‖∞) (21)

for some β ∈ KL, α ∈ K∞;
(ii) for all t ≥ T ,

x(t)∈M(ω̄) :=
⋃
p∈P
{x ∈ Rn | Vp(x) ≤ ω̄(‖d‖∞)} (22)

where
ω̄(‖d‖∞) := c+ α̃(‖d‖∞) (23)

for some c > 0 and α̃ ∈ K∞.

A proof of Theorem 2 is presented in Section V-B below, and
explicit expressions for Na in (20) and ω̄ in (22) are provided
in Section III-C. It is only mentioned here that Theorem 2
is completely analogous to Theorem 1, establishing uniform
boundedness by (21) and uniform ultimate boundedness in the
compact set M(ω̄) characterized by (22) of the solutions of
(15). Theorem 2 does not establish ISS stability of (15) with
respect to the compact setM(c), since this set is not invariant
under the 0-input dynamics of (15); see Example 2 in [50,
Section V-B] for an illustration of this behavior. However, as
was the case with Corollary 1, ISS can be recovered when the
equilibria of all subsystems coalesce. The following corollary
makes this statement precise by particularizing Theorem 2 to
the common equilibrium case, and it shows that [8, Theo-
rem 3.1] can be obtained as a special case of Theorem 2.

Corollary 3. Consider (15) with x∗p = 0 for all p ∈ P . Let
the assumptions of Theorem 2 hold, and further assume that

lim sup
‖x‖→0

Vq(x)

Vp(x)
<∞ (24)

for all p, q ∈ P . Then, the system (15) is ISS.

Finally, Definition 6 and Corollary 4 below are the coun-
terparts of Definition 3 and Corollary 2 for the switched
system (15), with Corollary 4 establishing the existence of
sets Ω1 and Ω2 with respect to which the switched system
with multiple equilibria (15) is practically stable.

Definition 6 (Adapted from [42]). The switched system (15)
is practically stable for a disturbance d∈D with respect to the
sets Ω1 and Ω2, if x(0)∈Ω1 implies x(t)∈Ω2 for all t ≥ 0.

Corollary 4. Under the assumptions of Theorem 2, there exists
a compact set Ω1 ⊂ M(c) with x∗p ∈

◦
Ω1 for all p ∈ P ,

such that the switched system (15) is practically stable for
any d ∈ D with respect to the sets Ω1 and Ω2 :=M(ω̄).
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M1(κ)
M2(κ)

M2(!)M1(!)

x
∗

1

x
∗

2

Fig. 1. Illustration of the set construction. The sublevel sets for system 1 are
in red and the sublevel sets of system 2 are in blue; the construction leads to
M1(κ) ∪M2(κ) ⊆M1(ω) ∩M2(ω) as Remark 1 explains.

III. SET CONSTRUCTIONS AND EXPLICIT BOUNDS

This section characterizes the family of switching signals re-
quired by Theorems 1 and 2 by providing explicit expressions
for the dwell-time bound Na in (8) and (20), respectively.
Explicit expressions of ω̄ are also given, thereby determining
the setsM(ω̄) within which the solutions ultimately converge.
We begin with relevant set constructions motivated by [20].

A. Set Constructions

Suppose that Vp is a function satisfying (5)-(6) in the case
of discrete or (17)-(18) in the case of switched continuous
systems. The κ-sublevel set of Vp is defined as

Mp(κ) := {x ∈ Rn | Vp(x) ≤ κ} ,

and the union of the sublevel sets over P is denoted as

M(κ) :=
⋃
p∈P
Mp(κ) ; (25)

see Fig. 1. Next, we define a positive constant

ω(κ) := max
p∈P

max
x∈M(κ)

Vp(x) , (26)

which is well defined since M(κ) is compact for any κ >
0 and P is finite. Intuitively, the definition of ω(κ) by (26)
enlarges each sublevel setMp(κ) so that the resulting enlarged
set Mp(ω(κ)) includes the sets Mq(κ) for all q ∈ P . An
illustration of this construction can be seen in Fig. 1 and the
following remark makes this intuition precise.

Remark 1. By the definition (26) of ω(κ), Vp(x) ≤ ω(κ) for
any x ∈ M(κ) and any p ∈ P . Thus, M(κ) ⊆ Mp(ω(κ))
for all p ∈ P , implying that M(κ) ⊆

⋂
p∈PMp(ω(κ)).

We now establish a relationship between the values Vp(x)
and Vq(x) of any pair Vp, Vq of ISS-Lyapunov functions at
a given point x ∈ Rn as the system switches between the
corresponding two subsystems p, q ∈ P , p 6= q. Consider the
ratio Vq(x)/Vp(x), and let

µp(κ) := max
q∈P

sup
x/∈

◦
Mp(κ)

Vq(x)

Vp(x)
, (27)

which is bounded5 due to (7) and (19). This constant provides
a bound on how much the value of the Lyapunov function can
change on switching. Clearly,

∀p, q ∈ P, Vq(x) ≤ µp(κ)Vp(x) ∀x /∈
◦
Mp(κ) .

To make this bound independent of p, let

µ(κ) := max
p∈P

µp(κ) , (28)

which implies that

∀p, q ∈ P, Vq(x) ≤ µ(κ)Vp(x) ∀x /∈
◦
Mp(κ) . (29)

Due to the interchangeability of the indices p and q, it also
holds that Vp(x) ≤ µ(κ)Vq(x) as long as x /∈

◦
Mq(κ).

Hence, when x /∈
◦
Mp(κ) ∪

◦
Mq(κ), we can write Vq(x) ≤

µ(κ)2Vq(x), from which it follows that

µ(κ) ≥ 1 , (30)

since Vq is positive definite for x /∈
◦
Mp(κ)∪

◦
Mq(κ). Finally,

in the context of the switched system (3), it is worth noting
that (29) holds for a switching instant kn even if xkn ∈

◦
M(κ),

as long as xkn /∈
◦
Mσ(kn−1)(κ). A similar statement can be

made for the switched continuous system (15).
Given the parameter κ, computation of µ(κ) and ω(κ) can

be challenging—numerical computations based on discretizing
the state-space become impractical as the dimension of the
system grows. This challenge has been pointed out in [20],
where the authors highlighted the need for efficient tools for
computing µ(κ) and ω(κ). To alleviate this issue, the following
proposition provides analytical bounds for µ(κ) and ω(κ) in
the case where Vp are quadratic functions.

Proposition 1. Let Vp(x) = (x − x∗p)
TSp(x − x∗p) for all

p ∈ P be a family of positive definite quadratic functions and
λmin(Sp) be the minimum and λmax(Sp) be the maximum
eigenvalues of Sp, respectively. Given κ > 0, define ω(κ) by
(26) and µ(κ) by (28). Then, the following hold

ω(κ)≤ max
p,q∈P

(
λmax(Sp)

(√
κ

λmin(Sq)
+ ‖x∗p − x∗q‖

)2
)

(31)

µ(κ)≤ max
p,q∈P

(
λmax(Sq)

λmin(Sp)

(
1 +

√
λmax(Sp)

κ
‖x∗p − x∗q‖

)2)
. (32)

The proof of Proposition 1 is provided in Appendix A. Note
that if αp(·) and αp(·) in Theorems 1 and 2 are available for
all p ∈ P , then, following steps similar to those in the proof
of Proposition 1, analytical bounds for ω(κ) can be obtained
for these non-quadratic Lyapunov functions as well; however,
we cannot obtain a general analytical bound for µ(κ). Note
that the bound (31) for ω(κ) has also been obtained in [19].

The aforementioned set constructions allow us to provide
explicit expressions for the average dwell-time bound Na in

5To see this, let a1 := lim sup‖x−x∗p‖→∞ Vq(x)/Vp(x) which is
bounded by (7) and (19). Hence, there exists an r > 0 such that for any x
with ‖x−x∗p‖ > r, we have Vq(x)/Vp(x) ≤ a1 + 1. Expand r if necessary
to ensure that M(κ) ⊂ Br(x∗p). Note that Vq(x)/Vp(x) is continuous on
Rn \ {x∗p} hence it is also continuous on Br(x∗p) \

◦
Mp(κ) ⊂ Rn \ {x∗p}

which is compact. Then, there exists a2 > 0 such that Vq(x)/Vp(x) < a2
for any x ∈ Br(x∗p)\

◦
Mp(κ). Therefore Vq(x)/Vp(x) < max{a1 +1, a2}

for all x 6∈
◦
Mp(κ), ensuring the boundedness of µp(κ) in (27).
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(8) and (20), and for the characterization of the sets M(ω̄)
in (10) and (22) of Theorems 1 and 2, respectively. Although
these expressions are derived in the proofs of Section V below,
we provide them here to ease their use in applications.

B. Switched Discrete Systems: Explicit Bounds

For the sake of notational convenience in (6), let λ :=
maxp∈P λp and α̂(‖d‖∞) := maxp∈P{αp(‖d‖∞)}. Then, for
any p ∈ P we can write (6) as

Vp(xk+1) ≤ λVp(xk) + α̂(‖d‖∞) , (33)

where λ ∈ (0, 1) and α̂ are independent of p.
Let ε be any constant that lies within (λ, 1). Then, it will

be shown in the proof of Theorem 1 that the lower bound on
the average dwell-time, i.e., Na in (8), is

Na =
lnµ(κ)

ln(ε/λ)
, (34)

where the constant µ(κ) ≥ 1 is defined by (28). Furthermore,
the compact set M(ω̄) in Theorem 1(ii) is characterized by

ω̄(‖d‖∞) := µ(κ)N0ω(κ) +
µ(κ)N0

1− ε
α̂(‖d‖∞) , (35)

with ω given by (26). From (35) the constant c > 0 and the
function α̃∈K∞ participating in (11) can be readily identified.

It is remarked that the constants ε and κ are design pa-
rameters available for tuning the frequency of the switching
signal. The choice of ε ∈ (λ, 1) provides a tradeoff between
robustness of the switched system (3) and the switching
frequency. In more detail, if ε is chosen close to λ, the lower
bound on the average dwell-time (34) becomes large, thus
limiting the number of switches Nσ(k, k) in any time interval
[k, k), as (4) implies. On the other hand, if ε is chosen close
to 1, the size of the compact setM(ω̄) to which the solutions
ultimately converge increases as ω̄ in (35) increases. As a
result, the solutions of (3) are permitted to wander in a larger
set, indicating low robustness of (3) to disturbances. Hence,
slower switching signals result in tighter trapping regions.

The effect of κ is more involved. Picking smaller values of
κ results in inner sublevel level sets of Vp, thus reducing the
size of M(κ) in (25) and causing µp(κ) to increase as the
supremum in (27) increases. Hence, smaller values of κ result
in larger values of µ(κ) by (28), leading to slower switching
frequencies as well as larger compact attractive sets M(ω̄);
observe the role of µ(κ) in (34) and (35). On the other hand,
picking a larger κ will result in smaller µ(κ) allowing for faster
switches, however, ω(κ) also increases making its effect on ω̄
unclear; observe the µN0ω(κ) term in (35).

C. Switched Continuous Systems: Explicit Bounds

To simplify notation in (18), we define λ := minp∈P λp > 0
and α̂(‖d‖∞) := maxp∈P{αp(‖d‖∞)}. Then, for any p ∈ P ,

∂Vp
∂x

fp(x, d) ≤ −λVp(x) + α̂(‖d‖∞) , (36)

where λ > 0 and α̂(‖d‖∞) are independent of p.

Let ε be any constant in the open interval (0, λ), then the
lower bound on the average dwell time Na in Theorem 2 is

Na =
lnµ(κ)

λ− ε
, (37)

where µ(κ) ≥ 1 is defined by (28). The compact set M(ω̄)
in Theorem 2(ii), within which solutions of (15) ultimately
become trapped corresponds to

ω̄(‖d‖∞) := µ(κ)1+N0ω(κ) + µ(κ)1+N0
1

ε
α̂(‖d‖∞) , (38)

from which the constant c > 0 and the class-K∞ function α̃
in (23) can be easily recognized.

As in the case of the discrete switched systems, the constant
ε ∈ (0, λ) presents a tradeoff between the robustness of
the system and the switching frequency; setting ε close to 0
increases the disturbance term in (38) while setting ε close to λ
increases Na in (37). Regarding the effect of κ, the discussion
is identical to that in Section III-B.

IV. SWITCHED SYSTEMS WITH MULTIPLE EQUILIBRIA:
LES EQUILIBRIA

Applying Theorems 1 and 2 require each subsystem of (3)
and (15), respectively, to be globally ISS. However, various
applications call for switching among systems with only local
stability properties. Hence, in this section, we relax the global
ISS requirement to mere LES, and establish practical stability
for (3) and (15) according to Definitions 3 and 6, provided
that an average dwell-time constraint is satisfied by switching.

A. Switched Discrete Systems

Consider a finite family of subsystems indexed by p ∈ P ,
such that each subsystem fp : Xp×Rm → Xp where Xp is an
open subset of Rn. Here, we require fp to be locally Lipschitz
in its arguments. For each p ∈ P , let x∗p ∈ Xp be a 0-input
equilibrium point of (1) and assume that there exists a locally
Lipschitz function Vp : Xp → R+ which, for all x ∈ Xp,
satisfies (5) for suitable class-K∞ functions6 αp and αp, and

Vp(fp(x, 0)) ≤ λpVp(x) , (39)

where λp ∈ (0, 1).
Now, let κp > 0 be such that

Mp(κ̄p) := {x ∈ Rn | Vp(x) ≤ κp} ⊂ Xp . (40)

For the sake of convenience, define

X :=
⋂
p∈P

◦
Mp(κ̄p) , (41)

which is an open subset of Rn; see Fig. 2 for an illustration
of this set. In contrast to the global case of Section II, here
we will require the following composability assumption, i.e.,

x∗p ∈ X , ∀p ∈ P , (42)

which ensures the non-emptiness of X and the feasibility of
switching among the members of the family of subsystems.

6To avoid confusion, note that these functions may differ from those in (5).
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X

x
∗

1 x
∗

2

M1(κ1)

M2(κ2) Ω1

M(µN0
!)

Fig. 2. Illustration of Theorem 3. The green set is Ω1, the grey set is
M(µN0ω), and the orange set is M(ω̄(δ)). The black dots represent a
solution of the switched system which satisfies Theorem 3, under disturbances
d ∈ D with ‖d‖∞ < δ.

We use the definitions and set constructions developed in
Section III-A with the local restriction that requires all sublevel
sets to lie within the domain X defined by (41); see Fig. 2.
Additionally, we modify the definition of µ from (27), (28) to,

µ(κ) := max
p,q∈P

sup
x∈X\

◦
Mp(κ)

Vq(x)

Vp(x)
, (43)

to incorporate the local restriction to X . We are now ready to
present the first main result of this section; refer to Fig. 2 for
the associated set constructions.

Theorem 3. Consider the switched system (3) and assume that
for each p ∈ P there exists a locally Lipschitz function Vp :
Xp → R+ which satisfies (5) for suitable class-K∞ functions
αp and αp and (39) for some 0 < λp < 1. Suppose further
that there exist κ > 0 and N0 ≥ 1 such that

M(µ(κ)N0ω(κ)) ⊂ X , (44)

where µ and ω are given by (43) and (26), respectively, M
is the union over P of the corresponding sublevel sets of Vp,
and X is the domain (41). Then, there exists δ > 0 such that
for any disturbance signal d ∈ D with ‖d‖∞ < δ, and for any
switching signal σ satisfying (4) with

N0 ≥ N0 ≥ 1 and Na ≥ Na , (45)

where N0 satisfies (44) with the selected κ > 0 and Na is
defined by (34), the switched system (3) is practically stable
with respect to the compact sets Ω1 and Ω2 defined by

Ω1 :=
⋂
p∈P
Mp(ω(κ)) and Ω2 :=

⋃
p∈P
Mp(ω̄(‖d‖∞)) ,

where

ω̄(‖d‖∞) := µ(κ)N0ω(κ) + α̃(‖d‖∞) , (46)

for a suitable class-K∞ function α̃.

A proof of Theorem 3 will be presented in Section V-C.
We now discuss some aspects that are relevant to the

implementation of Theorem 3. First, note that, unlike the
global ISS requirement of Theorem 1, Theorem 3 only requires

that for each p ∈ P a local Lyapunov function Vp satisfying (5)
and (39) is available. Then, the setsMp(κ̄p) in (40) represent
compact inner approximations of the basins of attraction of
the equilibrium points x∗p for p ∈ P . Although generally it
may be challenging to obtain such approximations, in many
practical situations semi-definite programming tools, such as
sum-of-squares (SoS) [51], can be used to facilitate this task
and obtain κp > 0 for which Mp(κ̄p) satisfies (40).

Let us now turn our attention to the verification of condition
(44) and provide a trial-and-error procedure to obtain suitable
κ and N0. First, choose a κ > 0 and compute ω(κ) and
µ(κ) by (26) and (43), respectively; in the case of quadratic
Lyapunov functions, this computation can be assisted by
Proposition 1. Then, if a N0 ≥ 1 can be found for which
(44) holds, continue with the implementation of the theorem
and compute Na using (34). However, if such N0 cannot be
found, repeat the above procedure with a new choice of κ > 0.
Section VI provides a concrete example for choosing suitable
κ and N0. Note though that this procedure requires checking
the set inclusion (44), a task that can be burdensome in general
cases. However, the procedure can be greatly simplified in
the case of quadratic Lyapunov functions by using readily
available convex optimization tools as in [52, Section 8.4].

As a final comment, note that Theorem 3 does not require
any specific information about the disturbance d ∈ D besides
the fact that fp is locally Lipschitz with respect to dk. In
addition, computing Na by (34) also does not require explicit
knowledge of the disturbance. Hence, Theorem 3 provides a
disturbance-agnostic method to design switching signals for
switching among subsystems that exhibit LES equilibria.

B. Switched Continuous Systems

Switching among continuous-time subsystems with LES
equilibria can be studied in an entirely analogous way to
switched discrete systems. Let Xp be an open subset of Rn
and assume that the vector field fp : Xp × Rm → Rn of
each subsystem is locally Lipschitz in its arguments. For each
p ∈ P , let x∗p ∈ Xp be a 0-input equilibrium point of (13) and
assume that there exists a continuously differentiable function
Vp : Xp → R+ which, for all x ∈ Xp satisfies (17) for suitable
class-K∞ functions αp and αp, and

∂Vp
∂x

fp(x, 0) ≤ −λpVp(x) , (47)

where λp > 0.
As in switched discrete systems, suppose that κp > 0 is

such that (40) holds, and let X defined by (41) be the domain
within which we will work. Furthermore, we require the
composability assumption (42) to hold. With set constructions
akin to those in Section IV-A and adopting (43) to define µ,
we can now present the main result of this section.

Theorem 4. Consider the switched system (15) and assume
that for each p ∈ P there exists a continuously differentiable
function Vp : Xp → R+ which satisfies (17) for suitable class-
K∞ functions αp and αp and (47) for some λp > 0. Suppose
further that there exist κ > 0 and N0 ≥ 1 such that

M(µ(κ)1+N0ω(κ)) ⊂ X , (48)
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where µ and ω are given by (43) and (26), respectively, M
is the union over P of the corresponding sublevel sets of Vp,
and X is the domain (41). Then, there exists δ > 0 such that
for any disturbance signal d ∈ D with ‖d‖∞ < δ, and for any
switching signal σ satisfying (16) with

N0 ≥ N0 ≥ 1 and Na ≥ Na ,

where N0 satisfies (48) with the selected κ > 0 and Na is
defined by (37), the switched system (15) is practically stable
with respect to the compact sets Ω1 and Ω2 defined by

Ω1 :=
⋂
p∈P
Mp(ω(κ)) and Ω2 :=

⋃
p∈P
Mp(ω̄(‖d‖∞)) ,

where

ω̄(‖d‖∞) := µ(κ)1+N0ω(κ) + α̃(‖d‖∞) , (49)

for a suitable class-K∞ function α̃.

A proof of Theorem 4 is provided in Section V-D below. We
only mention here that the discussion following Theorem 3
applies to Theorem 4 as well.

V. PROOFS

This section proves Theorems 1-4 and their corollaries.

A. Proof of Theorem 1 and Corollaries 1 and 2

The following lemma establishes an important estimate that
will be used in the proof of Theorem 1.

Lemma 1. Consider (3). Let k ∈ Z+ be the initial time and
{kn}∞n=1, kn ∈ Z+, be a strictly monotonically increasing
sequence of switching instants with k1 > k. Given κ > 0,
define µ(κ) by (27)-(28) and let

N := inf{n ∈ Z+ ∪ {∞} | xkn ∈
◦
Mσ(kn−1)(κ)} , (50)

be the index of the first switching instant kN for which (29)
cannot be used. Assume that for each p ∈ P , the function Vp
satisfies (5) and (33) for some λ ∈ (0, 1). Choose ε ∈ (λ, 1)
and assume that the switching signal satisfies Definition 2 for
any N0 ≥ 1 and Na ≥ Na where Na is given by (34). Then,
for any xk ∈ Rn, d ∈ D, and k ≤ k < kN ,

Vσ(k)(xk) ≤ µN0εk−kVσ(k)(xk) +
µN0

1− ε
α̂(‖d‖∞) , (51)

where α̂ is the class-K∞ function in (33). In addition, for
k ≤ k < kN the solutions of (3) satisfy

‖xk − x∗σ(k)‖ ≤ β(‖xk − x∗σ(k)‖, k − k) + α(‖d‖∞) (52)

for some β ∈ KL and α ∈ K∞.

The proof of the lemma can be found in Appendix B. Now
we are ready to present the proof of Theorem 1.

Proof of Theorem 1. The arguments of the proof refer to the
set constructions of Section III-A. To simplify notation, the
dependence on κ of ω(κ) in (26) and of µ(κ) in (28) will be
dropped. Consider any (fixed) switching signal σ : Z+ → P
satisfying Definition 2 for any N0 ≥ 1 and Na ≥ Na where
Na is given by (34). Without loss of generality, assume that

the system starts at k = 0 and let {k1, k2, ...} be the switching
times. We first prove part (ii) and then part (i) of the theorem.

For part (ii), we distinguish the following cases:
Case (a): Vσ(0)(x0) ≤ ω.
If N in (50) is unbounded, (29) can be used at all switching
times and Lemma 1 ensures that (51) holds for all k ≥ k = 0.
Since Vσ(0)(x0) ≤ ω and ε ∈ (λ, 1), (51) implies

Vσ(k)(xk) ≤ µN0ω +
µN0

1− ε
α̂(‖d‖∞) =: ω̄ (53)

for all k ≥ 0, showing that xk ∈M(ω̄) for all k ≥ 0 with ω̄ as
in (53). When, on the other hand, N is a finite number in Z+,
Lemma 1 ensures that the estimate (53) holds over the interval
[0, kN ). By (50) it is clear that xkN ∈

◦
Mσ(kN−1)(κ) ⊂M(κ),

which by Remark 1 implies

Vσ(kN )(xkN ) ≤ ω . (54)

Since µ ≥ 1, the definition of ω̄ by (53) implies that ω ≤ ω̄, so
that by (54) we have Vσ(kN )(xkN ) ≤ ω̄. As a result, when N is
finite, the validity of the estimate (53) can be extended over the
interval [0, kN ]. Now, considering k = kN as the initial instant,
the initial condition xkN satisfies (54) and the requirement for
Case (a) holds at k = kN . Hence, applying (51) of Lemma 1
with k = kN and propagating the same arguments as above
from kN onwards shows that Vσ(k)(xk) ≤ ω̄ for all k ≥ 0,
proving that xk never escapes from M(ω̄). By the expression
(53) for ω̄, choosing c := µN0ω and α̃(‖d‖∞) := (µN0/(1−
ε))α̂(‖d‖∞) in (11) proves part (ii) for Case (a).
Case (b) Vσ(0)(x0) > ω.
As in Case (a), we distinguish between two subcases based on
N defined by (50). When N is unbounded, Lemma 1 ensures
that (51) holds for all k ≥ k = 0; that is,

Vσ(k)(xk) ≤ µN0εkVσ(0)(x0) +
µN0

1− ε
α̂(‖d‖∞) . (55)

If K ∈ Z+ is such that

K ≥
ln (Vσ(0)(x0)/ω)

ln (1/ε)
, (56)

then εkVσ(0)(x0) ≤ ω for all k ≥ K, and (55) implies that
the bound (53) holds for all k ≥ K, establishing that xk ∈
M(ω̄) for all k ≥ K. If, on the other hand, N is a finite
integer in Z+, then by the definition of N in (50) we have
xkN ∈

◦
Mσ(kN−1)(κ) ⊂ M(κ). By Remark 1, this condition

implies that Vσ(kN )(xkN ) ≤ ω and the state xkN satisfies the
conditions for Case (a). Hence, repeating the arguments of
Case (a) from kN onwards with xkN as the initial condition
shows that xk ∈M(ω̄) for all k ≥ kN and with ω̄ as defined
in (53). Thus, choosing K = kN proves part (ii) for Case (b)
with the same choice for c and α̃ in (11) as in Case (a).

For part (i), when the initial condition x0 satisfies Case (a),
then K = 0 and the statement is vacuously true. If, on the
other hand, x0 satisfies the conditions of Case (b), observe
from the arguments above that K < kN + 1. Indeed, if N is
unbounded, kN → ∞ and K is given by (56) while if N is
a finite integer, K was selected equal to kN . Hence, (52) in
Lemma 1 holds for all k with k = 0 ≤ k < K, and the proof
of part (i) is completed by choosing β, α as in Lemma 1.
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Remark 2. It is of interest to discuss the behavior of the set
M(ω̄) in the absence of disturbances; that is, when dk = 0 for
all k ∈ Z+. In this case, ω̄ = c = µN0ω ≥ ω. It is clear from
the proof of Theorem 1 that if the initial conditions x0 satisfy
Vσ(0)(x0) ≤ ω ≤ c, the solution never leaves the set M(c).
However, this does not imply thatM(c) is a forward invariant
set of the 0-input system. Indeed, if the initial conditions x0

belong in the set M(c) but satisfy ω < Vσ(0)(x0) ≤ c, the
solution may exit M(c) before it returns to it forever, as the
proof of Case (b) indicates. Example 2 in [50, Section V-B]
illustrates that such behavior is possible.

Proof of Corollary 1. With the additional assumption7 (12),
(27) is bounded over the entire Rn without the exclusion of
an open set containing 0. Thus, µ can be used for switches
occurring at any x ∈ Rn and hence kN →∞ in Lemma 1 so
that (52) holds for all k ≥ 0.

Proof of Corollary 2. The proof is immediate by noting that
K = 0 for any x0 ∈ ∩p∈PMp(ω) =: Ω1 due to the fact that
Case (a) in the proof of Theorem 1 holds for this set. Further
Remark 1 ensures that x∗p ∈

◦
Ω1 for each p ∈ P .

B. Proof of Theorem 2 and Corollaries 3 and 4

We begin with the following lemma, which is analogous to
Lemma 1 and will be used in the proof of Theorem 2.

Lemma 2. Consider (15). Let t ∈ R+ be the initial time
and {tn}∞n=1, tn ∈ R+, be a strictly monotonically increasing
sequence of switching instants with t1 > t. Let x(t) be the
solution of (15) for the corresponding switching signal. Given
κ > 0, define µ(κ) by (27)-(28) and let8

N := inf{n ∈ Z+ ∪ {∞} | x(tn) ∈
◦
Mσ(t−n )(κ)} , (57)

be the index of the first switching instant tN for which (29)
cannot be used. Assume that for each p ∈ P , the function Vp
satisfies (17) and (36) for some λ > 0. Choose ε ∈ (0, λ) and
assume that the switching signal satisfies Definition 5 for any
N0 ≥ 1 and Na ≥ Na where Na is given by (37). Then, for
any x(t) ∈ Rn, d ∈ D, and t ≤ t < tN ,

Vσ(t)(x(t)) ≤ µ1+N0e−ε(t−t)Vσ(t)(x(t)) +
µ1+N0

ε
α̂(‖d‖∞) ,

(58)
where α̂ is the class-K∞ function in (36). In addition, for
t ≤ t < tN the solutions of (15) satisfy

‖x(t)− x∗σ(t)‖ ≤ β(‖x(t)− x∗σ(t)‖, t− t) + α(‖d‖∞) (59)

for some β ∈ KL and α ∈ K∞.

The proofs of Lemma 2, Theorem 2, and Corollaries 3 and
4 follow analogously to the proofs of Lemma 1, Theorem 1,
and Corollaries 1 and 2, respectively. Hence the details are
omitted here; see [50] for complete proofs.

7Essentially, (12) ensures that Vp(x) does not converge to 0 substantially
faster than Vq(x) as x→ 0.

8Define σ(t−n ) := limt↗tn σ(t).

C. Proof of Theorem 3

We begin with the following lemma regarding a geometric
property of sublevel sets of the functions Vp, p ∈ P that will
be used to prove Theorem 3.

Lemma 3. Consider the switched system (3) and assume that
for each p ∈ P there exists a locally Lipschitz function Vp :
Xp → R+ which satisfies (5) for suitable class-K∞ functions
αp and αp. Suppose further that there exist κ > 0 and N0 ≥ 1
such that condition (44) is satisfied for the corresponding µ
and ω as defined by (43) and (26), respectively. Then, for any
α̃ ∈ K∞ and N0 ∈ [1, N0], there exists a δ > 0 such that

M(ω̄(δ)) ⊂ X , (60)

where X is the domain defined by (41) and

ω̄(δ) := µ(κ)N0ω(κ) + α̃(δ) . (61)

The proof for Lemma 3 can be found in Appendix B. We
are now ready to present the proof of Theorem 3.

Proof of Theorem 3. We first show that there exists a δ > 0
such that for any disturbance d ∈ D with ‖d‖∞ < δ and any
x ∈ Mp(κ̄p), the local Lyapunov function Vp : Xp → R+ in
the statement of Theorem 3 satisfies an ISS estimate

Vp(fp(x, d)) ≤ λpVp(x) + αp(‖d‖∞) , (62)

for a suitable class-K∞ function αp. This follows from [33,
Theorem 2], which shows that a Lyapunov function Vp is also
an ISS-Lyapunov function over a set where the map gp :=
Vp ◦ fp : Xp ×Rm → R+ is (uniformly) Lipschitz. We claim:
Claim 1: There exists a δ > 0 such that gp is (uniformly)
Lipschitz for all x ∈Mp(κ̄p) and d ∈ Bδ(0).

The proof of Claim 1 follows by noting that by Heine-Borel
theorem,Mp(κ̄p)×Bδ(0) ⊂ Rn×Rm is compact, and hence
the locally Lipschitz function gp is (uniformly) Lipschitz over
this set. Using Claim 1 and repeating the steps in the proof of
[33, Theorem 2] results in (62).

To proceed with the proof of Theorem 3, let 1 ≤ N0 ≤
N0. Further, choose δ > 0 as above and let x0 ∈ Ω1 with
Ω1 =

⋂
p∈PMp(ω(κ)). Then, using the estimate (62) and the

average dwell-time conditions (45), follow steps analogous to
those in the proofs of Lemma 1 and Theorem 1 Case (a), to
define ω̄ as in the proof of Theorem 1 Case (a) with a suitable
α̃. Use this α̃ and N0 in Lemma 3, shrinking δ if necessary
to satisfy (60), so that for any d ∈ D with ‖d‖∞ < δ, we
have M(ω̄(‖d‖∞)) ⊂ M(ω̄(δ)) ⊂ X . Then, the arguments
of Theorem 1 Case (a) imply that xk ∈ Ω2 for all k ∈ Z+,
proving practical stability of (3) with respect to (Ω1,Ω2).

D. Proof of Theorem 4

In what follows, we present Lemma 4, which is analogous
to Lemma 3 and will be used to prove Theorem 4.

Lemma 4. Consider the switched system (15) and assume
that for each p ∈ P there exists a continuously differentiable
function Vp : Xp → R+ which satisfies (17) for suitable class-
K∞ functions αp and αp. Suppose further that there exist
κ > 0 and N0 ≥ 1 such that condition (48) is satisfied
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for the corresponding µ and ω as defined by (43) and (26),
respectively. Then, for any α̃ ∈ K∞ and N0 ∈ [1, N0], there
exists a δ > 0 such that

M(ω̄(δ)) ⊂ X ,

where X is the domain defined by (41) and

ω̄(δ) := µ(κ)1+N0ω(κ) + α̃(δ) .

The proof of Lemma 4 is identical to Lemma 3 and will be
omitted. Next we present the proof of Theorem 4.

Proof of Theorem 4. As in the proof of Theorem 3, we begin
with establishing an ISS estimate for the Lyapunov functions
Vp involved in Theorem 4. In particular, there exists a δ > 0
such that for any d ∈ D with ‖d‖∞ < δ and any x ∈Mp(κ̄p),

∂Vp
∂x

fp(x, d) ≤ −λpVp(x) + αp(‖d‖∞) , (63)

for a suitable class-K∞ function αp ∈ K∞. To show this
estimate, first note that since ∂Vp/∂x is continuous and
Mp(κ̄p) is compact, there is Mp > 0 such that for all
x ∈ Mp(κ̄p), ‖∂Vp(x)/∂x‖ ≤ Mp. Next, let δ > 0, then
Mp(κ̄p)×Bδ(0) ⊂ Rn×Rm is compact. As locally Lipschitz
functions on compact sets are (uniformly) Lipschitz, there
exists a Lp > 0 such that for all (x1, d1) and (x2, d2) in
Mp(κ̄p)×Bδ(0),

‖fp(x1, d1)− fp(x2, d2)‖ ≤ Lp
(
‖x1 − x2‖+ ‖d1 − d2‖∞

)
.

Using these bounds and (47), we have

∂Vp
∂x

fp(x, d) =
∂Vp
∂x

fp(x, 0) +
∂Vp
∂x

(fp(x, d)− fp(x, 0))

≤ −λpVp(x) +MpLp‖d‖∞ ,

and choosing αp(‖d‖∞) = MpLp‖d‖∞ results in (63).
The rest of the proof of Theorem 4 follows that of Theo-

rem 3, but now in place of (62), Lemma 3, and Theorem 1,
we use (63), Lemma 4, and Theorem 2, respectively.

VI. APPLICATION: ADAPTIVE LOCOMOTION OF
LIMIT-CYCLE BIPEDAL WALKING ROBOTS

This section focuses on applying the switched system results
developed above to realize practically stable gait adaptation
in a 3D biped by switching among dynamic movement primi-
tives, each corresponding to a limit-cycle locomotion behavior;
see also [29] for more details.

A. Overview: Adaptation by Switching

In the approach followed here, adaptation is achieved by
switching among motion primitives that correspond to 0-input
LES equilibria x∗p of discrete (1) or continuous (13) dynamical
systems together with the vector fields fp that capture the
corresponding dynamic behavior; that is,

Gp := {fp, x∗p} , p ∈ P . (64)

Converse Lyapunov theory [53], [54] then guarantees the
existence of suitable Lyapunov functions, which are assumed
to satisfy the composability condition (42); see Fig. 3(a) for
a conceptual illustration. Then, the collection G := {Gp | p ∈
P} of (64) constitutes a library of admissible motion prim-
itives, which can be composed according to a higher-level
supervisor to ensure adaptation. This process can be naturally
modeled as a switched system with multiple equilibria (3)
or (15), where the switching signal σ assigns to each time
instant the motion primitive that needs to be executed.

Quantifying safety for such switched systems, can be chal-
lenging. Switching effectively causes the system to “shift” to
a new equilibrium, and thus persistent switching in response
to constantly varying environmental or task conditions causes
the system to be in a “permanent” transient phase, never
converging to any of the underlying equilibrium states. The-
orems 3 and 4 resolve this problem by providing conditions
that guarantee practical stability as in Definitions 3 and 6;
this ensures safe operation in the sense that the system’s
evolution is trapped within an explicitly characterized compact
subset of the state space, even in the presence of disturbances.
Furthermore, these conditions are stated as a pair of constants

(a) (b) (c)

Fig. 3. (a) Illustration of dynamical motion primitives characterized by dynamical systems with LES equilibrium points, and their Lyapunov functions
represented as funnels. (b) Collaborative object transportation between a human and a robot (photo courtesy of Prof. Paul Oh, University of Nevada, Las
Vegas, NV). (c) Robot model with a choice of generalized coordinates when supported on left leg along with the impedance model for force generation.
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(N0, Na), which, by (4) and (16), bound the rate of switching,
effectively capturing the stability constraints associated with
the low-level dynamics in a succinct form readily available to
the high-level supervisor that decides when to switch.

Switched systems with multiple equilibria emerge in a wide
range of applications. In what follows, we consider adaptive
dynamic locomotion of bipedal robots as a concrete example
of how the theoretical tools provided in the previous sections
can be applied in practice. Dynamic locomotion behaviors can
be mathematically modeled via limit cycles [55]—i.e., isolated
periodic solutions in the system’s state space [56]—that can
form motion primitives, the composition of which result in
more complex movements for addressing the challenges of
real-world tasks [14], [15]. Limit-cycle motion primitives can
be naturally incorporated in the aforementioned setting, as they
can be associated with point attractors of suitably constructed
discrete-time systems via the method of Poincaré [56].

B. Dynamic Locomotion for Collaboration

Our motivation stems from a class of tasks in which a
bipedal robot physically collaborates with a leading human (or
robotic) co-worker to transport an object over some distance;
see Fig. 3(b). To safely accomplish such tasks, the robot needs
to adapt its locomotion pattern according to the externally
applied force supplied by the leader. We assume that the
leader’s intention can be represented as a sufficiently smooth
trajectory pL : R+ → R3, which is not explicitly available to
the biped. Instead, the biped experiences an interaction force
Fe : R+ → R3 that encodes important information about
desired velocity and direction. As is common in the relevant
literature [57], the interaction force Fe(t) is modeled by

Fe(t) = KL(pL(t)− pE(t)) +NL(ṗL(t)− ṗE(t)) , (65)

where pE(t) is the point at which the force is applied and
KL and NL are suitable stiffness and damping matrices,
respectively; see [28], [58], [59] for more details and Fig. 3(c).

In what follows, the exposition of modeling and control
aspects is terse, but see [59], [60] for relevant details. The
3D bipedal robot model of Fig. 3(c) comprises nine degrees
of freedom (DOFs), and its configuration can be described by
q := (q1, q2, ..., q9), as shown in Fig. 3(c). All DOFs except
yaw q1 and pitch q2 are assumed to be actuated. Defining
x̂ := (q, q̇) ∈ R18, dynamic walking gaits can be represented
as periodic solutions of the system with impulse effects

Σ :

{
˙̂x = f(x̂) + g(x̂)u+ ge(x̂)Fe, if x̂ 6∈ S

x̂+ = ∆(x̂−), if x̂− ∈ S
, (66)

where u are the inputs, (f, g, ge) describe the swing phase
dynamics under the influence of the external force Fe, and S
includes the states where the swing foot impacts the ground.
The ensuing impact is captured by the map ∆ taking the states
x̂− prior to impact to the states x̂+ right after impact; see [60].

To design walking controllers, we adopt the hybrid zero
dynamics (HZD) framework; see [59], [60] for details. In the
absence of the external force (Fe ≡ 0), a straightforward
application of the HZD method can generate a LES limit cycle
that corresponds to the biped walking along a straight line with

a desired nominal speed. Clearly, this (single) controller is not
adequate for the task described above, and this is the case even
when the intention of the leading collaborator exactly matches
the biped’s gait speed and direction as Fig. 5(a) demonstrates.
Indeed, since the leader’s intended trajectory pL(t) can only
be communicated to the biped via the interaction force (65),
its application will inevitably cause a turning moment about
the unactuated DOFs of the biped, eventually causing it to
deviate from the intended trajectory as shown in Fig. 5(a). Ac-
commodating the desired adaptability within a single control
law can be challenging, particularly in the case where large
deviations from the nominal conditions are required. However,
the theoretical tools provided above can simplify the problem,
and enhance adaptability by safely switching among different
control laws in response to the externally applied force.

C. Safe Adaptability: Switched Systems and Practical Stability

To adapt the biped’s motion to the interaction force, a family
of feedback control laws {Γp | p ∈ P} is designed based as
in [59], [60], each resulting in a LES limit-cycle gait Op.
Note that the application of Theorem 3 does not rely on the
particular method chosen to stabilize the low-level locomotion
behaviors; yet, the dimensional reduction afforded by the HZD
method greatly simplifies computations. The end result is that
each limit cycle Op can be associated with the 0-input fixed
point of a reduced-order forced Poincaré map ρp—see [33] for
a detailed definition—that gives rise to a discrete dynamical
system evolving on SZ with dynamics

zk+1 = ρp(zk, Fe,k) , (67)

where k represents the stride number, Fe,k : R+ → R3 is
the force9 on the biped over the k-th stride, z are suitable
coordinates for SZ , and z∗p is the 0-input fixed point of ρp
that corresponds to the limit cycle Op. In accordance with
(64), the motion primitives in this example are Rp = {ρp, z∗p},
and switching among them as specified by a switching signal
σ : Z+ → P gives rise to the switched discrete system with
multiple equilibria

zk+1 = ρσ(k)(zk, Fe,k) . (68)

Note that, owing to the underlying geometry of the HZD
method, the switched system (68) evolves in two dimensions.

1) Application of Theorem 3 for Practical Stability: For
concreteness, we work with a library containing three mo-
tion primitives Rp = {ρp, z∗p} with p ∈ P = {0, 1, 2}
corresponding to the limit cycles O0 for turning clockwise
by 30◦, O1 for walking straight, and O2 for turning counter-
clockwise by 30◦. Linearizing the 0-input system ρp(·, 0) for
each p ∈ P about the corresponding fixed point z∗p and
using Lyapunov’s equation [46, equation (4.12)], results in
a quadratic Lyapunov function Vp for the linearization. SoS
programming is then used to verify that Vp is a Lyapunov
function for the nonlinear system in a set containing the fixed

9The force is assumed to belong in the space of continuous and uniformly
bounded functions D := {Fe : R+ → R3 | Fe is continuous, ‖Fe‖∞ <
∞}. Thus, {Fe,k}k∈Z+

is a sequence of functions in a Banach space D
rather than the finite-dimensional Euclidean space Rm; see Appendix C for
a rigorous discussion along the lines of [33].
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points, so that the conditions (5), (39) and (42) required by
Theorem 3 are satisfied for each p ∈ P; see [15] for details
pertaining to SoS programming. The dashed ellipses of Fig. 4
show the corresponding sub-level setsMp(κ̄p) for each Vp for
κ̄0 = 0.1736, κ̄1 = 0.1415, κ̄2 = 0.1120, respectively. Next,
using the procedure explained in the second last paragraph of
Section IV-A, we choose κ = 0.002 and use Proposition 1 to
compute upper bounds for µ(κ) and ω(κ). With these bounds,
we further choose N0 = 2 so that the setM(µ(κ)N0ω(κ)) lies
within X :=

◦
M0(κ0)∩

◦
M1(κ1)∩

◦
M2(κ2) as required by (44);

see also Fig. 4. Finally, using (34) we compute Na = 0.99.
Then, all the conditions of Theorem 3 are fulfilled, implying
that for any initial condition in Ω1 = M0(ω) ∩ M1(ω) ∩
M2(ω) and for switching signals that satisfy (4) with the
chosen N0 and Na, the evolution of the switched system (68)
will never escape from the compact subset Ω2 =M(ω) of X ,
provided that the external forces Fe,k are sufficiently small.
Hence, the system is practically stable with respect to Ω1 and
Ω2 under the influence of the externally applied force.

2) Switching Policy and Adaptation: As the leader’s in-
tended trajectory pL(t), is not directly available to the biped,
the planner uses the external force as a cue for adaptation. Our
switching policy estimates the “average” heading direction Φk
that the force Fe is pointing to over a stride, and then chooses
the primitive that turns the biped towards this estimated
heading. To compute Φk, we integrate the force along the
X and Y directions over a stride; see Fig. 3(c) for the global
coordinate frame. Let t0 = 0 be the initial time and tk be the
time at the end of the k-th stride. Then, over the (k + 1)-th
stride, the integral of the force components are

FXk :=

∫ tk+1

tk

FXe (t) dt, FYk :=

∫ tk+1

tk

FYe (t) dt ,

which are used to compute the “average” heading as Φk =
arctan(FYk /F

X
k ). The switching policy is chosen to be σ(k+

1) = sign(Φk) + 1 where the sign function returns -1, 0, 1
for negative, 0, and positive Φk, respectively. We simulate the
scenario shown in Fig. 5(b) where pL(t) is represented by the
red line, along which the leader intends to move at a constant
speed of 0.65 m/s. Following the switching signal generated by

−1.2 −1 −0.8 −0.6 −0.4

1.6

1.8

2

2.2

MM

z1(rad/sec)

z
2
(r
a
d
/
se
c)

M

Fig. 4. Estimates of the BoA, i.e.,Mp(κ̄p), for the 0-input forced Poincaré
maps ρp, and verification of (44). The BoA estimates M0(κ0), M1(κ1),
and M2(κ2) are the dashed red, green, and blue ellipses, respectively. The
grey region is M(µ(κ)N0ω(κ)) in (44) for κ = 0.002, N0 = 2. Black
crosses are the solution of (68) for the simulation in Fig. 5(b).

our switching policy, the biped is able to adapt to the leader’s
intended trajectory in a safe manner, as verified by Fig. 4.

VII. CONCLUSIONS

This paper proposed a framework for designing switching
signals that ensure robustness under exogenous disturbances
for switched continuous and discrete systems with multiple
equilibria. It was shown that the solutions of such systems
remain bounded if each subsystem is ISS and the switching
signal satisfies an explicitly available average dwell-time con-
straint. Furthermore, relaxing the (global) ISS assumption to
equilibria that are merely LES, it was proved that the resulting
switched systems are practically stable provided again that
the switching signal satisfies an explicit average dwell-time
condition. Analytical computations of the bounds involved in
the design of the switching signals can be facilitated in the case
of quadratic Lyapunov functions. The theoretical results of this
paper were implemented to realize safe gait adaptation of a
3D bipedal robot model in the presence of an external forcing
signal. Although our motivation for studying this class of
systems arises from robot motion planning via the composition
of primitive movements, the results of this paper are relevant to
a much broader class of applications which require switching
among systems that do not share the same equilibrium point.

APPENDIX A
Proof of Proposition 1. Since the functions Vp are quadratic,
for all x ∈ Rn

λmin(Sp)‖x− x∗p‖2 ≤ Vp(x) ≤ λmax(Sp)‖x− x∗p‖2 . (69)

We will first show (31). From (25), (26) and since P is a
finite set, it follows that

ω(κ) := max
p∈P

max
x∈M(κ)

Vp(x) = max
p,q∈P

max
x∈Mq(κ)

Vp(x). (70)

Consider maxx∈Mq(κ) Vp(x). For any x ∈Mq(κ), we have

Vp(x) ≤ λmax(Sp)‖x− x∗p‖2 (71)

≤ λmax(Sp)
(
‖x− x∗q‖+ ‖x∗q − x∗p‖

)2
(72)

≤ λmax(Sp)

(√
κ

λmin(Sq)
+ ‖x∗q − x∗p‖

)2

, (73)

where (71) follows from the second inequality of (69), which
further leads to (72) by the use of triangle inequality. Finally,
(73) follows from noting that for any x ∈Mq(κ), the first in-
equality of (69) provides the bound ‖x−x∗q‖ ≤

√
κ/λmin(Sq),

which, on using in (72), gives (73). As (73) holds for any
x ∈Mq(κ), we have shown that maxx∈Mq(κ) Vp(x) satisfies
the bound in (73), which by (70) gives (31).

To show (32), from (27), (28) and the finite P we have

µ(κ) = max
p,q∈P

sup
x6∈

◦
Mp(κ)

Vq(x)

Vp(x)
. (74)

Consider sup
x6∈

◦
Mp(κ)

Vq(x)/Vp(x). For any x 6∈
◦
Mp(κ),

Vq(x)

Vp(x)
≤
λmax(Sq)‖x− x∗q‖2

λmin(Sp)‖x− x∗p‖2
(75)

≤ λmax(Sq)

λmin(Sp)

(
1 +
‖x∗p − x∗q‖
‖x− x∗p‖

)2

, (76)



13

(a) (b)
Fig. 5. Biped collaborating with a leader. The leader’s intended trajectory pL(t) is depicted by the red line and the blue stick figures represent the biped.
(a) Single controller for walking straight. (b) Switching among limit cycles for walking straight, turning clockwise by 30◦, and turning counterclockwise by
30◦ to adapt to the leader’s intention.

where (75) follows from (69), and (76) follows from the
triangle inequality. For x 6∈

◦
Mp(κ), Vp(x) ≥ κ which by the

second inequality of (69) gives ‖x − x∗p‖ ≥
√
κ/λmax(Sp).

Using this in (76) followed by (74) gives (32).

APPENDIX B
PROOF OF LEMMAS

Proof of Lemma 1. The statement of Lemma 1 holds for an
arbitrary initial time k; to avoid cumbersome expressions, we
prove the result for k = 0 noting that the same proof carries
to the case of an arbitrary k by replacing k with k− k in the
expressions. We consider switching signals σ : Z+ → P that
satisfy Definition 2 for N0 ≥ 1 and Na ≥ Na, where Na

is given by (34). Let {k1, k2, ...} be a sequence of switching
times for such signal. For notational compactness, define

Gba(r) :=

{∑b−a−1
j=0 rj = 1−rb−a

1−r if b > a

0 if b = a
.

where a, b ∈ Z+, b ≥ a, and 0 < r < 1. Further, we denote
Nσ(k, 0) by Nσ unless a different time window is specified.

Using (33) over the interval 0 ≤ k < k1 until the first
switching occurs, results in

Vσ(k)(xk) ≤ λkVσ(0)(x0) +Gk0(λ)α̂(‖d‖∞) . (77)

Now, since µ ≥ 1 by (30) and λ < ε, (77) results in

Vσ(k)(xk) ≤ µN0εkVσ(0)(x0) +
µN0

1− ε
α̂(‖d‖∞) , (78)

where we have used Gk0(λ) ≤ Gk0(ε) ≤ 1
1−ε . Hence, (51)

holds for all 0 ≤ k < k1, completing the proof if N = 1.
Next, if N 6= 1 so that xk1 /∈

◦
Mσ(k1−1), we can

apply (29) to relate the values at the switching state xk1
of the Lyapunov functions of the presently active system
σ(k1) and of the formerly active system σ(k1 − 1) = σ(0).
Hence, using (77) first to obtain the bound Vσ(k1−1)(xk1) ≤
λk1Vσ(0)(x0)+Gk10 (λ)α̂(‖d‖∞), we can then apply (29) to ob-
tain Vσ(k1)(xk1) ≤ µλk1Vσ(0)(x0) + µGk10 (λ)α̂(‖d‖∞). This
is used in (33) to write the following bound for k1 ≤ k < k2,

Vσ(k)(xk) ≤ µλkVσ(0)(x0)+
(
Gkk1(λ)+µλ

k−k1Gk10 (λ)
)
α̂(‖d‖∞).

Inductively repeating this process for Nσ switches with 1 ≤
Nσ < N we have the following bound for kNσ ≤ k < kNσ+1,

Vσ(k)(xk) ≤ µNσλkVσ(0)(x0) (79)

+

(
GkkNσ (λ) +

Nσ−1∑
j=0

µNσ−jλk−kj+1G
kj+1

kj
(λ)

)
α̂(‖d‖∞) ,

where kj = 0 for j = 0. We treat the state- and disturbance-
dependent terms in the upper bound of (79) separately. For
the state-dependent term, recall that µ ≥ 1 by (30) and use
(4) followed by Na ≥ Na where Na satisfies (34) to get,

µNσλkVσ(0)(x0) ≤ µN0(λµ1/Na)kVσ(0)(x0)

≤ µN0εkVσ(0)(x0) . (80)

To proceed with the disturbance-dependent term, first note that
Nσ − j = Nσ(k, kj+1). Hence, using (4) on Nσ(k, kj+1)
followed by Na ≥ Na with Na given by (34) results in

µNσ−j ≤ µN0µ(k−kj+1) ln(ε/λ)/ ln(µ)

≤ µN0(ε/λ)k−kj+1 . (81)

Using (81) in the summation in (79) gives
Nσ−1∑
j=0

λk−kj+1µNσ−jG
kj+1

kj
(λ) ≤ µN0

Nσ−1∑
j=0

εk−kj+1G
kj+1

kj
(λ)

≤ µN0

Nσ−1∑
j=0

εk−kj+1G
kj+1

kj
(ε)

(82)

where the last inequality follows from the fact that λ < ε,
hence Gkj+1

kj
(λ) ≤ Gkj+1

kj
(ε) with equality holding in the case

when kj+1 = kj + 1. It can be easily verified that

εk−kj+1G
kj+1

kj
(ε) = εk−kj+1 + εk−kj+1+1 + ...+ εk−kj−1 ,

which, on summing from j = 0 to j = Nσ−1 and after some
algebraic manipulation, results in
Nσ−1∑
j=0

εk−kj+1G
kj+1

kj
(ε) =

k−1∑
j=k−k1

εj +

k−k1−1∑
j=k−k2

εj + ...

+

k−kNσ−1−1∑
j=k−Nσ

εj =

k−1∑
j=k−kNσ

εj . (83)
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Using (83) in (82) gives
Nσ−1∑
j=0

λk−kj+1µNσ−jG
kj+1

kj
(λ) ≤ µN0

k−1∑
j=k−kNσ

εj . (84)

Additionally, as µ ≥ 1 by (30) and λ < ε,

GkkNσ (λ) ≤ µN0GkkNσ (ε) = µN0

k−kNσ−1∑
j=0

εj . (85)

Thus, using (84) and (85) on the disturbance dependent term
of the upper bound in (79) gives(

GkkNσ (λ) +

Nσ−1∑
j=0

λk−kj+1µNσ−jG
kj+1

kj
(λ)

)
α̂(‖d‖∞)

≤ µN0

k−1∑
j=0

εjα̂(‖d‖∞) ≤ µN0

1− ε
α̂(‖d‖∞) . (86)

Hence, upper bounding (79) with (80) and (86) gives (51)
for kNσ ≤ k < kNσ+1 for any 1 ≤ Nσ < N , i.e., for all
k1 ≤ k < kN . Further, by (78), (51) holds for 0 ≤ k < k1.
Hence, (51) holds for all 0 ≤ k < kN .

Now we turn our attention to (52). Using (5) in (51),

ασ(k)(‖xk − x∗σ(k)‖) ≤ µ
N0εkασ(0)(‖x0 − x∗σ(0)‖)

+
µN0

1− ε
α̂(‖d‖∞) . (87)

As α−1
σ(k) ∈ K∞ is monotonically increasing, by (87)

‖xk − x∗σ(k)‖

≤ α−1
σ(k)

(
µN0εkασ(0)(‖x0 − x∗σ(0)‖) +

µN0

1− ε α̂(‖d‖∞)

)
≤ α−1

σ(k)

(
2µN0εkασ(0)(‖x0 − x∗σ(0)‖)

)
+ α−1

σ(k)

(
2µN0

1− ε α̂(‖d‖∞)

)
(88)

where the last inequality follows by [61, Lemma 14] with
ε = 1. Observe that the first term in (88) is in class KL while
the second is in class K∞. Let s ∈ R+ and define β ∈ KL as

β(s, k) := max
p,q∈P

α−1
p

(
2µN0εkαq(s)

)
. (89)

Further define α ∈ K∞ as

α(s) := max
p∈P

α−1
p

(
2µN0

1− ε
α̂(s)

)
. (90)

Using (89) and (90) in (88) gives (52).

Proof of Lemma 3. For the sake of notational convenience, let

X̂ :=
⋃
p∈P
Mp(κ̄p)

∖ ⋂
p∈P

◦
Mp(κ̄p) ,

which, by the definition of X in (41), condition (44), and
N0 ≤ N0, does not contain any x ∈ M(ω̄(0)); see Fig. 2
where X̂ is illustrated by the light yellow region. Therefore,

∀p ∈ P, Vp(x) > ω̄(0), ∀x ∈ X̂ . (91)

Let κ be defined as

κ := min
p∈P

min
x∈X̂

Vp(x) , (92)

which exists because X̂ is compact and P is finite. Then,

∀p ∈ P, Mp(κ) ⊆Mp(κp) , (93)

which follows from κ ≤ minp∈P κp, which can be justified
by a contradiction argument10.

Now, from (91), it follows that κ > ω̄(0). Shrink δ if nec-
essary to ensure that 0 < δ < α̃−1(κ− ω̄(0)), where α̃ ∈ K∞
is as in (61). Then, for any p ∈ P , and x ∈Mp(ω̄(δ)),

Vp(x) ≤ ω̄(0) + α̃(δ) < κ . (94)

Hence,

∀p ∈ P, Mp(ω̄(δ)) ⊂Mp(κ) . (95)

Furthermore, using (95) in (93) gives,

∀p ∈ P, Mp(ω̄(δ)) ⊂Mp(κ̄p) . (96)

To complete the proof, we use a contradiction to show
that (60) holds with the choice of δ as above. Assume,
ad absurdum, that this is not true. Then, there must exist
a x̂ ∈ M(ω̄(δ)) which lies in the complement of X =⋂
p∈P

◦
Mp(κ̄p). Since x̂ ∈ M(ω̄(δ)) we have that x̂ ∈

Mp(ω̄(δ)) for some p ∈ P , which by (96) gives x̂ ∈Mp(κ̄p)

for that p. This combined with x̂ 6∈
⋂
p∈P

◦
Mp(κ̄p) imply that

x̂ ∈ X̂ . Hence, since x̂ ∈ X̂ , by (92) we have Vp(x̂) ≥ κ, and
since x̂ ∈Mp(ω̄(δ)), by (94) we have Vp(x̂) < κ, arriving at
a contradiction and completing the proof.

APPENDIX C
DISCRETE DISTURBANCE SIGNAL IN A BANACH SPACE

Even though the results developed for discrete switched
systems in Section II-A and Section IV-A of this paper are
for disturbance signals in a Euclidean space, they also apply
to the more general case of disturbances in an arbitrary Banach
space. Such signals often arise in the study of robustness of
periodic phenomena [33], as it did in the robotic application
studied in Section VI.

Let (D, ‖ · ‖D) be a Banach space [62] and consider a
discrete disturbance signal d : Z+ → D, which belongs to the
set of bounded disturbances D := {d : Z+ → D | ‖d‖∞ :=
supk∈Z+

‖dk‖D < ∞}. For this class of disturbances, the
proofs of all the theorems presented in this paper follow
identically as before except for Claim 1 in the proof of
Theorem 3. Hence, in what follows we prove Claim 1 for
the case of disturbances in an arbitrary (possibly infinite-
dimensional) Banach space.

Proof of Claim 1. As Vp and fp are locally Lipschitz in their
arguments, their composition gp := Vp◦fp is locally Lipschitz
as well. Hence, for any (x, 0) ∈ Mp(κ̄p)×D, there exists a
δx > 0 and Lx > 0 such that ‖gp(x1, d1) − gp(x2, d2)‖ ≤

10Suppose, ad absurdum, that κ > minp∈P κp. Without loss of generality,
let κ1 = minp∈P κp. Then, by the definition (92) of κ, for each x ∈ X̂ ,
V1(x) ≥ κ > minp∈P κp = κ1, implying that every point in X̂ is strictly
outsideM1(κ1); i.e., X̂ ∩M1(κ1) = ∅. On the other hand, X̂ includes all
the boundary sets ∂Mp(κp), because, by definition, ∂Mp(κp) cannot be in
◦
Mp(κp). But since M1(κ1) is closed, it must contain ∂M1(κ1) so that
X̂ ∩M1(κ1) 6= ∅ leading to a contradiction with X̂ ∩M1(κ1) = ∅.
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Lx‖(x1−x2, d1−d2)‖, for any11 x1, x2 ∈ Bδx(x) and d1, d2 ∈
Bδx(0) ⊂ D. Construct an open cover

⋃
x∈Mp(κ̄p)Bδx/2(x) of

Mp(κ̄p) which is compact, hence there exists x̂1, x̂2, · · · , x̂N
such that Mp(κ̄p) ⊂

⋃n
i=1Bδi/2(x̂i) where δi := δx̂i and

define δ := min{δ1/2, · · · , δN/2}.
Consider x1, x2 ∈Mp(κ̄p) and d1, d2 ∈ Bδ(0) ⊂ D. Then,

the following two cases arise.
Case (a): There exists an i ∈ {1, · · · , N} such that x1, x2 ∈
Bδi(x̂i).
As d1, d2 ∈ Bδ(0) ⊂ Bδi/2(0), and by the assumption of this
case x1, x2 ∈ Bδi(x̂i), we can use the Lipschitz continuity of
gp in the δi neighborhood of (x̂i, 0) to obtain ‖gp(x1, d1) −
gp(x2, d2)‖ ≤ Li‖(x1−x2, d1−d2)‖ where Li := Lx̂i . Define
L̂ := max{L1, · · · , LN}, then we can express the Lipschitz
bound as

‖gp(x1, d1)− gp(x2, d2)‖ ≤ L̂‖(x1 − x2, d1 − d2)‖ . (97)

Case (b): There does not exist any i ∈ {1, · · · , N} such that
x1, x2 ∈ Bδi(x̂i).
To obtain the Lipschitz bound in this case we first need to
establish uniform boundedness of gp overMp(κ̄p)×Bδ(0) ⊂
Xp × D. Note that gp(·, 0) : Xp → Xp is Lipchitz on the
compact setMp(κ̄p) as it is locally Lipshcitz in its arguments.
Hence, there exists a L̃ > 0 such that ‖gp(y1, 0)−gp(y2, 0)‖ ≤
L̃‖y1 − y2‖ for any y1, y2 ∈ Mp(κ̄p). Further, using the
boundedness (compactness) of Mp(κ̄p) ⊂ Rn, there exists
a r > 0 such that ‖y1−y2‖ ≤ r for any y1, y2 ∈Mp(κ̄p). As
Mp(κ̄p) ⊂

⋃n
i=1Bδi/2(x̂i), there exist x̂m and x̂n such that

‖x1 − x̂n‖ < δn/2 and ‖x2 − x̂m‖ < δm/2. Then,

‖gp(x1, d1)− gp(x2, d2)‖
= ‖gp(x1, d1)− gp(x̂n, 0) + gp(x̂n, 0)− gp(x̂m, 0)

+ gp(x̂m, 0)− gp(x2, d2)‖
≤ ‖gp(x1, d1)− gp(x̂n, 0)‖+ ‖gp(x̂n, 0)− gp(x̂m, 0)‖

+ ‖gp(x̂m, 0)− gp(x2, d2)‖
≤ Ln

(
‖x1 − x̂n‖+ ‖d1‖

)
+ L̃‖x̂n − x̂m‖

+ Lm
(
‖x2 − x̂m‖+ ‖d2‖

)
≤ 2L̂

(
r + δ

)
+ L̃r =: M . (98)

Also, it can be noted that ‖x1−x2‖ ≥ δ which can be shown
by the way of contradiction. Suppose ‖x1 − x2‖ < δ. Let
x̂n be such that ‖x1 − x̂n‖ < δn/2 which exists because
Mp(κ̄p) ⊂

⋃n
i=1Bδi/2(x̂i). Then, adding and subtracting this

x̂n in ‖x1 − x2‖, and using reverse triangle inequality gives

‖x2 − x̂n‖ − ‖x1 − x̂n‖ ≤ ‖x1 − x̂n + x̂n − x2‖ < δ

which leads to ‖x2−x̂n‖ < δ+‖x1−x̂n‖ < δn/2+δn/2 = δn
implying that x2 ∈ Bδn(x̂n), which along with the fact that
x1 ∈ Bδn(x̂n) leads to a contradiction with the assumption

11Notation: We use Bδ(a) to denote an open-ball of radius δ centered at
a. This notation can be used for open-balls in Rn, as well as D. It will be
clear from context the space to which the ball belongs.

of Case (b). Hence, ‖x1 − x2‖ ≥ δ which is used in (98) to
obtain

‖gp(x1, d1)− gp(x2, d2)‖

≤M ≤ M

δ
‖x1 − x2‖ ≤

M

δ
‖(x1 − x2, d1 − d2)‖ . (99)

With the bounds (97) and (99) in Case (a) and (b), respectively,
let L := max{L̂,M/δ} to obtain

‖gp(x1, d1)− gp(x2, d2)‖ ≤ L‖(x1 − x2, d1 − d2)‖ ,

for any x1, x2 ∈Mp(κ̄p) and d1, d2 ∈ Bδ(0).
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