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Abstract— In this paper, we analyze the robustness of distinct
periodic solutions of systems with impulse effects (SIEs) under
uncertainty through the method of Poincaré. We work with
a class of disturbances that affect both the continuous and
discrete update dynamics of the SIE, as well as the geometry
of the surface governing state transitions. In particular, we
show that in the absence of any disturbances, the fixed point
of the corresponding Poincaré map is locally asymptotically
stable, if, and only if, in the presence of disturbances the
periodic orbit of the SIE is locally input-to-state stable. This
result generalizes the method of Poincaré for periodic orbits to
explicitly incorporate the effect of disturbances. Although our
motivation for this work stems from the need to rigorously and
conveniently analyze robust controllers for dynamically moving
legged robots, the results presented here are relevant to a much
broader class of systems that can be modeled as forced SIEs.

I. INTRODUCTION

The method of Poincaré [1] has been one of the principal
approaches for investigating the stability properties of iso-
lated periodic orbits, i.e., limit cycles, exhibited by dynamical
systems. The method establishes that the asymptotic stability
of a periodic orbit is equivalent to the asymptotic stability
of the corresponding fixed point of a discrete dynamical
system that arises through the associated Poincaré map. In
the present paper, we extend the classical Poincaré analysis
to analyze the robustness under uncertainty of periodic orbits
exhibited by systems with impulse effects (SIEs) [2], using
the notion of input-to-state stability (ISS) [3].

SIEs represent a class of hybrid dynamical systems that
appear in a wide range of applications, such as impact me-
chanics [4], population dynamics [5], and legged robotics [6].
Our particular interest in SIEs arises from the latter, where
walking and running gaits are abstracted as limit cycle solu-
tions of SIEs. A variety of methods—hybrid zero dynamics
[6], geometric reduction [7], and virtual constraints [8] to
name a few—have been proposed to generate asymptotically
stable limit-cycle solutions to SIEs representing models of
periodic locomotion behaviors of legged robots.

Clearly though, in any practical scenario, these robots will
have to operate under uncertainty arising through unknown
model parameters [9]–[11], ground height variations [12]–
[14], as well as exogenous forces [15]–[18]. Frequently,
robust locomotion controllers are designed on the basis
of the discrete system that arises from a Poincaré map.

S. Veer is with the Department of Mechanical and Aerospace En-
gineering, Princeton University, Princeton, NJ 08540, USA, e-mail:
sveer@princeton.edu. I. Poulakakis is with the Department of
Mechanical Engineering, University of Delaware, Newark, DE 19716, USA;
e-mail: poulakas@udel.edu.

This work is supported in part by NSF CAREER Award IIS-1350721
and by NRI-1327614.

However, precisely because of the presence of uncertainty,
the connection between conclusions obtained by analyzing
the fixed point of this discrete system and the periodic
solution of the SIE it represents is only partially understood.
Addressing this issue is at the core of the present paper.

To study robustness of limit cycles, we adopt the notion
of ISS [3], [19]. Analyzing ISS for limit-cycles of SIEs is
challenging due to the hybrid nature of the system, and the
fact that the 0-input compact attractor is a set rather than
an equilibrium point. To address these issues, [20] directly
analyzes the solutions of the hybrid system using the point-
to-set distance, which in general settings is a difficult task.
By way of contrast, in this paper, and along the lines of
Poincaré’s method, we exploit the periodicity of the 0-input
limit cycle to obtain a discrete dynamical system that encodes
its ISS properties, thereby, circumventing the need to study
the hybrid solutions of the system under external inputs.

The main contribution of this paper is to prove that, under
sufficiently small disturbances, local ISS (LISS) of a hybrid
limit cycle of a forced (perturbed) SIE is equivalent to
the local ISS of the corresponding 0-input fixed point of
the associated forced Poincaré functional, which, in turn,
is equivalent to the local asymptotic stability (LAS) of
this fixed point in the unforced Poincaré map. This work
extends our recent results in [21] to include disturbances that
affect not only the continuous and discrete parts of the SIE,
but also the geometry of the surface governing transitions.
From a practical perspective, this constitutes an important
class of disturbances; a very common example where such
disturbances arise is in the study of periodic walking or
running on uneven terrain. Finally, it is worth pointing out
that the results of this paper are applicable to periodic orbits
of continuous-time systems as well by taking the discrete
dynamics of the SIE as the identity map.

Notation: The sets of reals and integers are denoted by
R and Z, respectively; the symbols R+ and Z+ are used
to denote the sets of non-negative reals and integers. For
x ∈ Rn, the Euclidean norm is denoted by ‖x‖. Let
A ⊆ Rn, then the point-to-set distance of x from A is
defined as dist(x,A) := infy∈A ‖x − y‖. The norm of a
continuous function u : R+ → Rp is defined as ‖u‖∞ :=
supt∈R+

‖u(t)‖, whereas the norm of a sequence v̄ : Z+ →
Rq is defined as ‖v̄‖∞ := supk∈Z+

‖vk‖. Despite our use of
‖ ·‖∞ for the norm of the continuous function as well as the
sequence, no confusion arises as it will always be clear from
context. A function α : R+ → R+ belongs to class K if it
is continuous, strictly increasing, and α(0) = 0. A function
β : R+×R+ → R+ belongs to class KL if it is continuous,
β(·, t) belongs to K for any fixed t ≥ 0, β(s, ·) is strictly



decreasing, and limt→∞ β(s, t) = 0, for any fixed s ≥ 0.

II. FORCED SYSTEMS WITH IMPULSE EFFECTS

The objective of this paper is to analyze the robustness of
distinct periodic solutions of forced (perturbed) SIEs. This
section introduces and motivates this class of systems.

A. Model Formulation and Motivation

We are interested in SIEs of the form

Σ :

{
ẋ(t) = f(x(t), u(t)), if x(t) 6∈ S(w)

x(t)+ = ∆(x(t)−, v), if x(t)− ∈ S(w)
, (1)

where
S(w) := {x ∈ Rn | H(x,w) = 0} . (2)

In (1) and (2), x ∈ Rn denotes the state of the system, and
x(t)− = limτ↗t x(τ) and x(t)+ = limτ↘t x(τ) are the left-
and right-limits of x(·) at t. The continuous-time input signal
u : R+ → Rp represents a disturbance that influences the
continuous part of (1). In addition, v ∈ Rq and w ∈ Rr are
discrete input values that capture the uncertainty associated
with the update rule of (1). We assume that the unforced
(0-input) system possesses a limit-cycle solution O and our
goal is to investigate the behavior of O under the influence
of the exogenous continuous and discrete input signals.

Systems like (1) appear naturally in a variety of applica-
tions. To provide a concrete example, consider limit-cycle
locomotion behaviors in legged robots [6]; see Section VI
below for a detailed discussion. Such systems frequently
operate under externally applied forces u(t) that are unknown
or partially known. Furthermore, there is uncertainty v asso-
ciated with their state updates as they undergo impact events.
Finally, often such robots must walk or run on uneven terrain,
resulting in uncertainty regarding ground contacts; in (1) this
type of uncertainty is captured by the parameter w affecting
the switching conditions. In more general settings, forced
SIEs (1) are relevant to studying the robustness of sequen-
tially composed [22] periodic movement primitives [23]–
[25] for accomplishing high-level motion planning objec-
tives. In such cases, switching from one movement primitive
to another will inevitably involve uncertainty, calling for
robustness guarantees [25]. The current paper provides tools
for assessing robustness of the individual primitives.

B. Modeling Assumptions

We require the following assumptions.
A.1) f :Rn ×Rp → Rn is twice continuously differentiable
A.2) u belongs to the space of continuous bounded functions

U := {u : R+ → Rp | u is continuous, ‖u‖∞ <∞}
Assumption A.1, the continuity of u as a function of t by
assumption A.2, and [26, Theorem 3.1] guarantee the local
existence and uniqueness of the flow ϕ(t, x(0), u) of the
continuous-time part of (1), which starts from the initial state
x(0) and evolves under the influence of a fixed u.

The continuous-time evolution of (1) terminates when the
flow ϕ intersects the surface S(w) defined by (2). We assume

A.3) H : Rn×Rr → R is twice continuously differentiable.
Furthermore, there exists δw > 0 such that for any ŵ ∈
Bδw(0) and for any x̂ ∈ S(ŵ) we have ∂H

∂x |(x̂,ŵ) 6= 0.
Assumption A.3 ensures that for each w ∈ Bδw(0), the
switching surface S(w) defined by (2) is a co-dimension 1
embedded sub-manifold of Rn [1, p. 431]. Intuitively, we can
view w as a disturbance which “deforms” and “moves” the
switching surface in Rn while retaining its smooth structure.

The hybrid flow of (1) can be constructed by the flow ϕ of
the continuous-time part of (1) which, on approaching S(w),
is interrupted by the update map ∆, for which we assume
A.4) ∆ : Rn×Rq → Rn is twice continuously differentiable

Now, let x(t) := ψ(t, x(0), u, v̄, w̄) be the hybrid flow of
(1) from the initial state x(0), evolving under the continuous-
time input u ∈ U , and the sequence of input values v̄ : Z+ →
Rq and w̄ : Z → Rr that perturb the update law ∆ and
“deform” the surface S(w). We will assume that
A.5) v̄ ∈ V := {v̄ : Z+ → Rq | ‖v̄‖∞ < ∞} and w̄ ∈

W := {w̄ : Z→ Rr | ‖w̄‖∞ <∞}
Let x∗ ∈ S(0) and T ∗ ∈ (0,∞) be such that

A.6) dist(∆(x∗, 0),S(0)) > 0 and ϕ(t,∆(x∗, 0), 0) exists
for all t ∈ [0, T ∗].

Then we can define the set

O := {ϕ(t,∆(x∗, 0), 0) | t ∈ [0, T ∗)} , (3)

for which we assume that
A.7) O ∩ S(0) = {x∗} and O is transversal to S(0) at x∗,

i.e., LfH(x∗, 0, 0) < 0.
With these assumptions, it follows that O is a periodic
orbit of (1) in the absence of any external inputs and x∗

corresponds to its geometric intersection with S.

III. AUGMENTED FORCED POINCARÉ MAP

We are interested in the behavior of the unforced periodic
solution O defined by (3) in the presence of the (possibly
non-vanishing) perturbations u, v and w. Our analysis will be
based on the notion of a forced Poincaré map, which returns
the next intersection of the forced solution of a system with
a suitably defined Poincaré section. Note that when w = 0,
the (unperturbed) surface S(0) serves as a natural (albeit not
unique) choice for a Poincaré section [21, p. 3]. However,
in the presence of a non-zero perturbation w, the switching
surface varies at each discrete event. Note here that some
other surface that is transversal to the orbit could be selected
as a section where the solution is sampled. However, in a
practical setting, there will always be uncertainty associated
with any choice of this section due to sensor noise or other
sources. In what follows, and without loss of generality,
we will select the switching surface of (1) to sample the
solution. Hence, before defining the forced Poincaré map,
we reformulate the SIE (1) in an augmented form which
facilitates subsequent analysis.

Consider the evolution of the system between two succes-
sive crossings of the switching surface; see Fig. 1. We adopt
the following conventions. Let tk be the time instant of cross-
ing the surface Sk = S(wk−1) determined by the input value



Sk+1 = S(wk)

Sk = S(wk−1)

∆(xk; vk)

'(t;∆(xk; vk); uk)

Fig. 1. Solution of (1) evolves from Sk to Sk+1. Dashed line corresponds
to the discrete dynamics, while the solid line represents the evolution during
the continuous phase.

wk−1 ∈ w̄ and let xk = limt↗tk x(t) be the corresponding
state just prior to intersecting Sk. The update rule ∆(xk, vk)
provides initial conditions for the subsequent continuous
evolution x(t) = ϕ(t,∆(xk, vk), u(t)) for t ≥ tk, and the
system continues until it crosses the surface Sk+1 = S(wk).
To capture the discrete evolution of the switching surfaces,
we define a new state variable s ∈ Rr with dynamics ṡ = 0
between successive crossings. In addition, at each crossing,
the state s is updated to the value w that determines the
next crossing. Hence, s(t) is a piecewise-constant, right-
continuous signal and limt↗tk s(t) = sk = wk−1 with
Sk = S(wk−1) being the most recently intersected surface
and limt↘tk s(t) = ∆s(wk) = wk, with Sk+1 = S(wk)
being the surface that determines the next switching.

This way, we can define an augmented SIE with state
xa := (x, s) ∈ Rn × Rr and dynamics

Σa :

 ẋa(t) = fa(xa(t), u(t)), if xa(t) 6∈ Sa
x+a = ∆a(x−a , v, w), if x−a ∈ Sa

, (4)

where

fa(xa, u) :=

[
f(x, u)

0

]
, ∆a(xa, v, w) :=

[
∆(x, v)

w

]
(5)

and the augmented switching surface is defined as

Sa := {xa ∈ Rn × Rr | H(xa) = 0} . (6)

The augmented SIE (4) is in the form of the perturbed SIEs
studied in [21] enabling the use of tools provided there.

With this definition of the augmented system, the flow
ϕa(t, xa(0), u) of the continuous-time part of (4) takes the
form ϕa(t, xa(0), u) = (ϕ(t, x(0), u), s(0)). Further, the
hybrid flow xa(t) := ψa(t, xa(0), u, v̄, w̄) of (4) satisfies
ψ(t, x(0), u, v̄, w̄) = Πxψa(t, xa(0), u, v̄, w̄) where Πx is
the projection of ψa to its first n components. Hence, the
solution of the augmented system retains the solution of (1)
while the parameter w that (smoothly) “deforms” the surface
S(w) of (1) enters as a disturbance in the discrete dynamics
of the augmented system. With these constructions,

Oa := O × {0} ⊂ Rn × Rr , (7)

is a periodic orbit of (4) that satisfies assumptions A.6-A.7
with respect to the dynamics of the augmented SIE (4).

To analyze the behavior of Oa under the influence of the
external inputs u, v̄, w̄, we now define the forced Poincaré
map. We begin by introducing the time-to-impact map TI :

Sa × U × Rq × Rr → R+,

TI(xa, u, v, w) :=


inf{t ≥ 0|ϕa(t,∆a(xa, v, w), u) ∈ Sa},

if ∃t : ϕa(t,∆a(xa, v, w), u) ∈ Sa
∞, otherwise

(8)

that provides the time required by the flow of (4) starting at
xa ∈ Sa and evolving under u, v, and w, to return to Sa.
The forced Poincaré map Pa : Sa × U × Rq × Rr → Sa is
then defined by

Pa(xa, u, v, w) := ϕa(TI(xa, u, v, w),∆a(x, v, w), u), (9)

Observe that TI in (8) depends on the function of time u,
which by assumption A.2 belongs in the space of contin-
uous bounded functions. Hence, TI, and consequently Pa,
are nonlinear functionals defined on an infinite-dimensional
Banach space. Although, due to space limitations, we point
to [21] for a detailed treatment of such objects, we mention
here that by an argument similar to that in the proof of [21,
Lemma 1] the existence of a δ > 0 can be established so
that TI(xa, u, v, w) is continuously (Fréchet) differentiable
in its arguments for any xa ∈ Bδ(x∗a) where xa := (x∗, 0),
u ∈ U such that ‖u‖∞ < δ, v ∈ Bδ(0), and w ∈ Bδ(0).
From the continuous differentiability of ϕa [21, Lemma 1]
and TI it follows that Pa is continuously differentiable in its
arguments for similar neighborhoods as TI.

The augmented forced Poincaré map gives rise to a
discrete dynamical system, which evolves on Sa and has the
following structure[

xk+1

sk+1

]
=

[
P (xk, uk, vk, wk)

wk

]
, (10)

where according to our convention (xk, sk) denotes the
state of the augmented system just prior to intersecting
Sa and uk := u|[tk,tk+1) is the restriction of u on the
interval [tk, tk+1). Finally, the unforced (zero-input) fixed
point x∗a := (x∗, 0) represents the limit cycle Oa.

Note that by the structure of the augmented system, the
map P in (10) does not depend on the s-component of the
augmented state and the two parts are decoupled. Hence, x∗

is a zero-input fixed point of the system

xk+1 = P (xk, uk, vk, wk) , (11)

that is x∗ = P (x∗, 0, 0, 0). Finally, we note that the unforced
Poincaré map P0 : S(0) → S(0), i.e., u = 0, v̄ ≡ 0, and
w̄ ≡ 0, can be recovered by P0(x) := P (x, 0, 0, 0)|S(0), and
gives rise to a discrete dynamical system

xk+1 = P0(xk) , (12)

with x∗ as its fixed point.

IV. MAIN RESULTS

To present the main result of the paper, we will need the
following stability definitions.



Definition 1: The 0-input periodic orbit O of (1) is or-
bitally LISS if there exist δ > 0, α1, α2, α3 ∈ K, and
β ∈ KL, such that x(t) := ψ(t, x(0), u, v̄, w̄) satisfies for
all t ≥ 0,

dist(x(t),O) ≤ β(dist(x(0),O), t) + α1(‖u‖∞)

+ α2(‖v̄‖∞) + α3(‖w̄‖∞) , (13)

for any1 x(0) ∈ S+0 with dist(x(0),O) < δ, u ∈ U with
‖u‖∞ < δ, v̄ ∈ V with ‖v̄‖∞ < δ, and w̄ ∈ W with
‖w̄‖∞ < δ.

Definition 2: The fixed point x∗ of (12) is LAS if there
exist a δ > 0 and β ∈ KL, such that for all k ∈ Z+,

‖xk − x∗‖ ≤ β(‖x0 − x∗‖, k) , (14)

holds for any x0 ∈ Bδ(x∗).
Definition 3: The 0-input fixed point x∗ of (11) is LISS

if there exist δ > 0, α1, α2, α3 ∈ K, and β ∈ KL, such that
for all k ∈ Z+,

‖xk − x∗‖ ≤ β(‖x0 − x∗‖, k) + α1(‖u‖∞) + α2(‖v̄‖∞)

+ α3(‖w‖∞) , (15)

is satisfied for any x0 ∈ S0∩Bδ(x∗), u ∈ U with ‖u‖∞ < δ,
v̄ ∈ V with ‖v̄‖∞ < δ, and w̄ ∈ W with ‖w̄‖∞ < δ.

With the above definitions, we are now ready to state the
main result of this paper.

Theorem 1: Consider the SIE (1) and the discrete dy-
namical systems (10) and (12). Let assumptions A.1-A.7 in
Section II be satisfied. Then, the following are equivalent:

(i) fixed point x∗ of (12) is LAS;
(ii) 0-input fixed point x∗ of (11) is LISS;

(iii) 0-input orbit O of (1) is LISS.
The practical significance of Theorem 1 lies in the fact

that it substantially simplifies the assessment of LISS of
periodic orbits of SIEs in the presence of uncertainty. If the
uncertainty can be represented in the form of disturbances
affecting both the continuous and discrete parts as well as
the switching surface of the SIE (1), then proving orbital
LISS of a periodic solution of interest reduces to evaluating
the asymptotic stability properties of the corresponding fixed
point of the discrete dynamical system (12). In fact, the
design of control laws for enhancing the robustness of a fixed
point of (12) can be directly related to the orbital setting of
(1) in the sense that the corresponding periodic orbit will be
LISS for sufficiently small (orbital) disturbances.

V. PROOF OF THEOREM 1

The proof of Theorem 1 relies on the results in [21] and
is organized in a sequence of lemmas, the purpose of which
is to show that the following statements are equivalent:
(a) 0-input fixed point x∗a of (10) is LAS,
(b) 0-input fixed point x∗a of (10) is LISS,
(c) 0-input orbit Oa of (4) is LISS,
(d) 0-input orbit O of (1) is LISS,

1Without loss of generality, let S+k+1 := {x ∈ Rn | H(x,wk) > 0}
be the side of the switching surface where the solution of the SIE evolves
after the k-th intersection.

(e) 0-input fixed point x∗ of (11) is LISS,
(f) fixed point x∗ of (12) is LAS.

The first lemma establishes bounds2 relating “distances”
from periodic solutions of (4) and (1).

Lemma 1: Let O and Oa be defined as in (3) and (7),
respectively. Then, for any xa := (x, s) ∈ Rn ×Rr and any
ya := (y, ŝ) ∈ Rn × Rr,

(i) ‖x− y‖ ≤ ‖xa − ya‖ ≤ ‖x− y‖+ ‖s− ŝ‖ ,
(ii) dist(x,O) ≤ dist(xa,Oa) ≤ dist(x,O) + ‖s‖ .

Proof: The first inequality of (i) follows by noting that
x− y is the projection of xa − ya on its first n coordinates,
while the second inequality follows by triangle inequality.

To prove (ii), note that by the definition of Oa in (7),
ya ∈ Oa takes the form of (y, 0) where y ∈ O. Hence,

dist(xa,Oa) := inf
ya∈Oa

‖xa − ya‖ = inf
y∈O
‖(x, s)− (y, 0)‖. (16)

As ‖x− y‖ ≤ ‖(x, s)− (y, 0)‖, we get,

dist(x,O) = inf
y∈O
‖x− y‖ ≤ inf

y∈O
‖(x, s)− (y, 0)‖

= dist(xa,Oa) ,

where the last equality follows from (16), completing the
proof of the first inequality of (ii). Now, using the second
inequality of Lemma 1(i) in (16), we get

dist(xa,Oa) ≤ inf
y∈O
‖x− y‖+ ‖s‖ = dist(x,O) + ‖s‖ ,

completing the proof of the second inequality of (ii).
Lemma 2: (a)⇐⇒ (b)⇐⇒ (c)

Proof: The proof of this lemma relies on the results
in [21] given the structure of the augmented SIE (4). From
assumptions A.1-A.7 in Section II, it can be verified that (4)
satisfies [21, Assumptions A.1-A.3] and that the augmented
orbit Oa satisfies [21, Assumptions A.4-A.7]. Hence, [21,
Theorem 2] gives (a)⇐⇒ (b) followed by [21, Theorem 1]
which shows that (b)⇐⇒ (c), completing the proof.

Lemma 3: (c)⇐⇒ (d)
Proof: Let x(t) and xa(t) be solutions of (1) and (4),

respectively, as discussed below (4).
( =⇒ ) Assume that (c) holds. Using the first inequality of
Lemma 1(ii), for all t ≥ 0,

dist(x(t),O) ≤ dist(xa(t),Oa)

≤ β(dist(xa(0),Oa), t) + α1(‖ū‖∞)

+ α2(‖v̄‖∞) + α3(‖w̄‖∞)

≤ β(dist(x(0),O) + ‖s(0)‖, t) + α1(‖ū‖∞)

+ α2(‖v̄‖∞) + α3(‖w̄‖∞)

≤ β(2dist(x(0),O), t) + α1(‖ū‖∞)

+ α2(‖v̄‖∞) + α3(‖w̄‖∞) + β(2‖w̄‖∞, 0) ,

where the second inequality follows from (c), the third in-
equality follows from the second inequality of Lemma 1(ii),
and the last inequality follows from [27, Lemma 14(2)] with

2Observe that the bounds of Lemma 1 hold globally; the local nature
of the results in subsequent lemmas that use Lemma 1 is inherited by the
locality of the corresponding definitions; e.g., Definition 1, 2, or 3.



ε = 1 and ‖s(t)‖ ≤ ‖w̄‖∞ for all t ≥ 0. Finally, noting that
α3(‖w̄‖∞) + β(2‖w̄‖∞, 0) ∈ K ensures that (d) holds.
( ⇐= ) Now, assume that (d) holds. Using the second
inequality of Lemma 1(ii), for all t ≥ 0,

dist(xa(t),Oa) ≤ dist(x(t),O) + ‖s(t)‖
≤ β(dist(x(0),O), t) + α1(‖ū‖∞)

+ α2(‖v̄‖∞) + α3(‖w̄‖∞) + ‖w̄‖∞
≤ β(dist(xa(0),Oa), t) + α1(‖ū‖∞)

+ α2(‖v̄‖∞) + α3(‖w̄‖∞) + ‖w̄‖∞ ,

where the second inequality follows from (d) and ‖s(t)‖ ≤
‖w̄‖∞ for all t ≥ 0, and the last inequality follows from the
first inequality of Lemma 1(ii), ensuring that (c) holds.

Lemma 4: (b)⇐⇒ (e)
Proof: ( =⇒ ) Assume that (b) holds. Using the first

inequality of Lemma 1(i), for any k ∈ Z+,

‖xk − x∗‖ ≤ ‖xa,k − x∗a‖
≤ β(‖xa,0 − x∗a‖, k) + α1(‖ū‖∞)

+ α2(‖v̄‖∞) + α3(‖w̄‖∞)

≤ β(‖x0 − x∗‖+ ‖w‖, k) + α1(‖ū‖∞)

+ α2(‖v̄‖∞) + α3(‖w̄‖∞)

≤ β(2‖x0 − x∗‖, k) + α1(‖ū‖∞) + α2(‖v̄‖∞)

+ α3(‖w̄‖∞) + β(2‖w̄‖∞, 0) ,

where the second inequality follows from (b), the third
inequality follows from the second inequality of Lemma 1(i),
and the last inequality follows from [27, Lemma 14(2)] with
ε = 1. Finally, noting that α3(‖w̄‖∞) + β(2‖w̄‖∞, 0) ∈ K
ensures that (e) holds.
( ⇐= ) Assume that (e) holds. Using the second inequality
of Lemma 1(i), for any k ∈ Z+,

‖xa,k − x∗a‖ ≤ ‖xk − x∗‖+ ‖w‖
≤ β(‖x0 − x∗‖, k) + α1(‖ū‖∞) + α2(‖v̄‖∞)

+ α3(‖w̄‖∞) + ‖w̄‖∞
≤ β(‖xa,0 − x∗a‖, k) + α1(‖ū‖∞) + α2(‖v̄‖∞)

+ α3(‖w̄‖∞) + ‖w̄‖∞ ,

where the second inequality follows from (e) and the last
inequality follows from the first inequality of Lemma 1(i),
ensuring that (b) holds.

Lemma 5: (f)⇐⇒ (a)
Proof: The proof of this lemma is a direct consequence

of the fact that the map P0 in (12) and the 0-input augmented
Poincaré map Pa in (9) are related by

Pa(xa, 0, 0, 0) =
[
P0(x)T 0T

]T
. (17)

We only note that in proving ( ⇐= ), the switching surface
S0 corresponds to S evaluated at s0 and remains constant
since the lemma deals with the 0-input case.

Now, we are ready to present the proof of Theorem 1.
Proof: [Theorem 1] The proof of Theorem 1(i) ⇐⇒

Theorem 1(ii) follows by using Lemmas 5, 2, and 4. The
proof of Theorem 1(i)⇐⇒ Theorem 1(iii) follows by using
Lemmas 5, 2, and 3, completing the proof of Theorem 1.

VI. LISS OF A BIPEDAL WALKER

In this section, we use Theorem 1 to establish LISS of
limit-cycle gaits on the bipedal robot model of Fig. 2(a) that
walks on uneven terrain under the influence of externally
applied forces. Although in this section we work with a
single limit-cycle gait, such periodic orbits can be used
as movement primitives in a supervisory control system,
the goal of which is, for example, to realize a desired
motion planning objective [23] or to make the system robust
against large-scale uncertainty [24]. Establishing LISS of the
individual movement primitives that are made available to the
supervisor is a critical component in devising provably safe
switching policies that comply with the high-level objectives.

Let q := (q1, · · · , q5) be the configuration coordinates
of the robot, labeled in Fig. 2(a), x := (q, q̇) ∈ R10 be
the state, and u ∈ U := {u : R+ → R2 | ‖u‖∞ <
∞, u is continuous} be an external force. Then, the evolu-
tion of the state during the swing phase is

ẋ = f(x) + g(x)Γ + ge(x)u , (18)

where f , g, and ge are the corresponding vector fields and
Γ ∈ R4 includes the actuator inputs associated with a feed-
back controller; see [15, Section II.A] for exact expressions.
The swing phase terminates when the swing-foot reaches the
ground. We assume that the height of the ground changes
changes on a step-to-step basis as shown in Fig. 2(a). Let w ∈
R represent the change in the height between consecutive
steps, so that the switching surface is

S(w) := {(q, q̇) ∈ R10 | pvE(q)− w = 0} , (19)

where pvE(q) is the height of the swing foot. Impact of the
swing foot with the ground is assumed to be instantaneous
and modeled as ∆ : R10×R2 → R10, which maps the states
prior to impact x− to the states post-impact x+, under the
influence of an impulsive disturbance v ∈ R2. Combining the
continuous dynamics of the swing phase (18) and the discrete
dynamics given by ∆, the walking cycle of the biped can be
expressed as a forced SIE

Σ :

{
ẋ = f(x) + g(x)Γ + ge(x)u, if x 6∈ S(w)

x+ = ∆(x−, v), if x− ∈ S(w)
. (20)

The augmented SIE can be readily defined as in Section III.
An asymptotically stable periodic orbitO in the absence of

external signals can be generated as in [15]. Then, following
Section III, we obtain the discrete-time system

xk+1 = P (xk, uk, vk, wk) , (21)

with a 0-input fixed point x∗, where P is the x projection
of the augmented forced Poincaré map, as in (11). Then, x∗

is an asymptotically stable fixed point of the map P0(·) =
P (·, 0, 0, 0), and using Theorem 1 it follows that the 0-input
fixed point x∗ of (21) and the periodic orbit O of (20) are
LISS; Figs. 2(b) and 2(c) provide a numerical verification.
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Fig. 2. (a) Robot model with a choice of generalized coordinates. (b), (c) Response of the biped when u = 0 N, ‖v̄‖∞ = 0 N.s, ‖w̄‖∞ = 0 cm in blue;
u = [2 sin(4t) 0]T N, ‖v̄‖∞ = 0.1 N.s, ‖w̄‖∞ = 1 cm in gray; and u = [4 sin(4t) 0]T N, ‖v̄‖∞ = 0.2 N.s, ‖w̄‖∞ = 2 cm in red. (a) Evolution of
‖xk − x∗‖ where {xk}∞k=0 is the solution of (11) (b) Supremum deviation of x(t) = ψ(t, x(0), u, v̄, w̄), the solution of (20), from O over each step.

VII. CONCLUSION

In this paper, we presented a method to rigorously analyze
the LISS of periodic orbits of SIEs by studying the stability
properties of the fixed point of the associated Poincaré map.
This greatly simplifies robustness analysis and facilitates
the design of robust controllers by allowing the control
designer to restrict attention to the fixed point of the discrete
dynamical system given by the Poincaré map, rather than
working directly with the hybrid solutions of the SIE. We
studied disturbances in the continuous-time dynamics, dis-
crete update dynamics, as well as the switching surface. The
theoretical results are numerically verified in the case of an
underactuated bipedal robot walking dynamically on uneven
terrain under the influence of persistent external excitation.
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