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Abstract— Our objective in this paper is to establish ro-
bustness to disturbances for continuous-time switched systems
with multiple equilibria (SSME) while being unaware of the
disturbances. We provide an average dwell-time bound which
can be computed without explicit knowledge of the disturbance.
Switching signals that satisfy this bound ensure safe operation
of the switched system for sufficiently small disturbances by the
notion of practical stability. In essence, this paper establishes
the robustness property that safe evolution of the SSME in
the absence of disturbances results in the safety of the SSME
under mild disturbances. Our motivation for studying SSMEs
under disturbances arises from robotics, where certain motion
planning problems require switching among controllers under
unknown or unmodeled disturbances. However, these results
are applicable to a much broader class of applications.

I. INTRODUCTION

A switched system comprises a family of dynamical sub-
systems where the choice of the active subsystem is governed
by a switching signal. Such systems arise in a wide variety
of applications where switching among various modes of
operation is required—such as electronics [1], automotive
control [2], robotics [3], and air-traffic control [4], among
many others. In this paper, we will study the robustness of
such switched systems to disturbance signals.

Owing to the versatility of switched systems as a modeling
tool for a variety of practical applications, the study of
their stability has attracted attention in the past few decades.
However, most of the research efforts have been focused
on the class of switched systems in which the individual
subsystems share a common equilibrium point; see [5], [6]
for such systems. Various applications demand switching
among subsystems that do not share the same equilibrium re-
sulting in switched systems with multiple equilibria (SSME).
Examples where these systems arise include, robot motion
planning [7], [8], cooperative manipulation [9], power control
of wireless networks [10], and neuron models [11].

When switching occurs among systems that do not share
a common equilibrium point, the state cannot be expected
to converge to any single point unless switching ceases. To
ensure boundedness for solutions of SSMEs under persistent
switching, a class of switching signals characterized by a
dwell-time bound was identified in continuous- [12] and
discrete- [8] time switched systems; dwell-time bounds have
also been proposed in [13] and [14] to ensure practical
stability of such systems. Switching among subsystems with
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multiple invariant sets, rather than equilibria, was studied in
[15]. However, none of the aforementioned efforts considers
switching in the presence of disturbances. To address this, the
authors’ previous work [16] established ultimate bounded-
ness of solutions for SSMEs with input-to-state stable (ISS)
subsystems. Nevertheless, [16] requires the knowledge of
a global ISS-Lyapunov function for each subsystem, which
may be difficult or impossible to obtain in practical appli-
cations. For example, robotic systems rarely exhibit global
stability properties and disturbances are often unmodeled
and/or unknown. Motivated by this example, in this paper
we relax the requirement of global ISS-Lyapunov functions
to local exponential Lyapunov functions and establish safety
guarantees in the form of practical stability. This notion of
stability captures the fact that even though various systems
lack stable equilibrium behaviors, they still operate safely,
and can be considered stable in a “practical” sense [17].

Our interest in perturbed SSME arises from their applica-
tion to problems in robotic locomotion where a motion plan
must be devised using dynamical motion primitives. Such
primitives are characterized by point attractors or limit cycles
[18], and their composition induces a SSME structure to the
dynamics of the robot [7]–[9], [19]. The ability to safely
switch among such primitives can enhance the capability
of robots to navigate cluttered environments [7], [8], [20],
adapt to external signals [21]–[23], traverse uneven terrain
[24], [25], transition among various locomotion patterns [19],
[26], [27], and many others. The results developed in this
paper facilitate such robotic applications by providing rigor-
ous guarantees of safe switching among dynamical motion
primitives in the face of unknown disturbances.

In this paper, we study switching among subsystems with
locally exponentially stable equilibria under disturbances. It
is shown that the average dwell-time bound computed in
the absence of disturbances will ensure “safe” operation of
the switched system despite the presence of disturbances.
In effect, this allows us to obtain the average dwell-time
bound using Lyapunov functions, alleviating the need to
find an ISS-Lyapunov function, as required by [16]. Our
notion of safety requires trapping the solutions in a suitable
compact set for all time, from where the state would recover
the nominal (equilibiurm) operation of the active subsystem,
should switching ceases and disturbances vanish. Using the
notion of practical stability, we establish robust switching
for SSME (Theorem 1) which naturally extends to switched
systems that share a common equilibrium point (Corollary 1).

Notation: The set of reals and integers are denoted by R
and Z, and non-negative reals and integers are denoted by



R+ and Z+, respectively. For x ∈ Rn, the Euclidean norm
is denoted by ‖x‖. A Euclidean open-ball of radius δ > 0
centered at x is denoted by Bδ(x) ⊂ Rn. Let A ⊆ Rn be
a set, then its interior is denoted by

◦
A while its closure is

denoted by A. The disturbance signal is denoted as a map-
ping d : R+ → Rm with norm ‖d‖∞ := supt∈R+

‖d(t)‖.
It is assumed that d belongs to D := {d : R+ →
Rm | d is piecewise continuous, ‖d‖∞ < ∞}. A function
α : R+ → R+ belongs to class K∞ if it is continuous,
strictly increasing, α(0) = 0, and lims→∞ α(s) =∞.

II. SWITCHED SYSTEMS WITH MULTIPLE EQUILIBRIA

This section introduces the class of switched systems that
we study and the requisite notions of safety and stability.

A. Family of Dynamical Systems

Consider a finite family of continuous-time dynamical
systems indexed by a finite set P ,

ẋ(t) = fp(x(t), d(t)) , p ∈ P , (1)

where Xp ⊆ Rn is an open and connected subset of Rn and
x ∈ Xp is the state, fp : Xp×Rm → Rn is the vector field of
the p-th system that is locally Lipschitz in its arguments, and
d ∈ D is a disturbance signal; see the notation at the end of
Section I. Each system exhibits a unique (in Xp) equilibrium
point x∗p in the absence of disturbances, i.e. fp(x∗p, 0) = 0
for all p ∈ P . The majority of the switched systems literature
assumes that each member of the family shares a common
equilibrium point [6]. Here, we relax this assumption and
allow for the possibility that if p 6= q, then x∗p 6= x∗q .
Furthermore, we assume that the equilibrium point of each
system is exponentially stable in the absence of disturbances
and is endowed with a continuously differentiable Lyapunov
function Vp : Xp → R+, that satisfies for all x ∈ Xp,

α(‖x− x∗p‖) ≤ Vp(x) ≤ α(‖x− x∗p‖) , (2)
∂Vp
∂x

fp(x, 0) ≤ −λVp(x) , (3)

where α, α ∈ K∞ and λ > 0. Note that the assumption of
uniform (over P) bounds and rate of convergence does not
result in any loss of generality. Indeed, even if the bounds
αp, αp, and the rate of convergence λp are different for each
p ∈ P , we can always choose α(·) := minp∈P αp(·), α(·) :=
maxp∈P αp(·), and λ := minp∈P λp > 0.

Associated with each subsystem is a compact inner ap-
proximation Bp of its basin-of-attraction (BoA). In many
practical situations [8], [22], [26], such approximations can
be obtained through semi-definite programming, such as
sum-of-squares [28]. We can shrink Bp further, if necessary,
to address system limitations—such as actuator saturation,
friction bounds, joint limits and other constraints. For the
sake of convenience, define

B :=
⋂
p∈P
Bp, (4)

as the intersection of all Bp. Then, to ensure the feasibility
of switching among the subsystems we assume that each
equilibrium point x∗p lies in

◦
B.

B. Switched System
Let σ : R+ → P be a right-continuous switching signal

which, at any given time instant t ∈ R+, executes the σ(t) ∈
P member of the family giving rise to a switched system,

ẋ(t) = fσ(t)(x(t), d(t)) ; (5)

see [16, Section II-B] for a discussion of solutions of (5),
which are continuous in time. Our objective is to ensure
“safe” operation of the switched system (5) despite distur-
bances. We consider the system to be safe if (i) its solution is
trapped within a compact set for all time and (ii) it is always
in a state from which it will converge back to the equilibrium
of the most recent active system, should switching ceases
and disturbances vanish. This would ensure that the system
always operates in a regime from where the nominal behavior
can be recovered. We make this intuitive notion of safety for
(5) mathematically precise in the following definition.

Definition 1: A solution x(t) of (5) is considered to be
safe if x(t) ∈ Bσ(t) for all t ≥ 0.

A sufficient (but not necessary) condition for Definition 1
to hold is that for all t ≥ 0,

x(t) ∈
⋂
p∈P
Bp =: B . (6)

We will study the class of switching signals σ that ensure
the safety of the switched system (5) by establishing (6). In
particular, we will achieve this by identifying σ that lead to
the practical stability [17] of (5) with appropriate sets. Next,
we provide a definition of practical stability.

Definition 2: The switched system (5) is practically sta-
ble with respect to the sets Ω1 and Ω2 with Ω1 ⊂ Ω2, if
x(0) ∈ Ω1 implies x(t) ∈ Ω2 for all t ≥ 0.

We will characterize this class of switching signals by the
notion of average dwell time, introduced in [29], which is
formalized in the following definition.

Definition 3: A switching signal σ(t) has average dwell-
time Na > 0 if the number Nσ(t, t) ∈ Z+ of switches over
any interval [t, t) ⊂ R+ satisfies

Nσ(t, t) ≤ N0 +
t− t
Na

, ∀t ≥ t ≥ 0 (7)

where N0 ≥ 1 is a finite constant.
Intuitively, the average dwell time Na represents the

average time-gap between any two consecutive switches.
Hence, a large Na leads to slower switching. The role of N0

is to provide additional flexibility to switch faster than the
average in some time intervals, which can be compensated
by slower switching in others.

III. SET CONSTRUCTIONS

In this section we introduce certain set constructions and
constants which will be used throughout the paper. A detailed
discussion of the set construction can be found in [16,
Section III], hence, the exposition here will be terse.

Let Vp be a Lyapunov function for the p-th system in
the family (1) which satisfies (2) and (3). For the sake of
notational convenience, we define

Mp(κ) := {x ∈ Rn | Vp(x) ≤ κ} , (8)



as the κ-sublevel set of Vp, and their union over P as

M(κ) :=
⋃
p∈P
Mp(κ) . (9)

Further, define

ω(κ) := max
p∈P

max
x∈M(κ)

Vp(x) , (10)

which by construction entails that M(κ) ⊆ Mp(ω(κ))
for each p ∈ P; see [16, Remark 1] for justification. An
illustration of this set construction can be found in Fig. 1.

To quantify the ratio by which the value of the Lyapunov
function changes on switching from subsystem p to any other
subsystem in P , define the positive constant

µp(κ) := max
q∈P

max
x∈Bp\

◦
Mp(κ)

Vq(x)

Vp(x)
, (11)

which is well-defined as P is finite and Bp \
◦
Mp(κ) is

compact. The max over x in (11) is restricted within Bp ⊂
Xp because when switching-out from p—in accordance with
Definition 1—we expect the state to be within Bp. The
exclusion of the open set

◦
Mp(κ) containing x∗p from the max

is to eliminate the possibility of the denominator approaching
zero while the numerator is non-zero; note that Vp(x∗p) = 0
while Vq(x∗p) > 0. Further, we can define

µ(κ) := max
p∈P

µp(κ) , (12)

which is independent of p. The interchangeability of p and
q implies that µ(κ) ≥ 1; see [16, Section III-A] for details.

IV. MAIN RESULTS

With the constructions and definitions in Section III, we
are now ready to state the main result of this paper.

Theorem 1: Consider the switched system (5). For each
p ∈ P assume that there exists a continuously differentiable
function Vp that satisfies (2) and (3). Further, assume that
there exist N0 ≥ 1 and κ > 0, such that

M(µ(κ)1+N0ω(κ)) ⊂
◦
B , (13)

where µ, ω, and B are as in (12), (10), and (4), respectively.
Then, there exists a δ > 0 such that for any d ∈ D with
‖d‖∞ < δ, and any switching signal σ that satisfies (7) with

1 ≤ N0 ≤ N0 and Na ≥ Na :=
lnµ(κ)

λ− ε
, (14)

where λ is as in (3) and ε ∈ (0, λ), the switched system (5)
is practically stable with respect to the sets

Ω1:=
⋂
p∈P
Mp(ω(κ)) and Ω2(‖d‖∞):=M(ω̄(‖d‖∞)), (15)

where Ω2(‖d‖∞) ⊂
◦
B and

ω̄(‖d‖∞) := µ(κ)1+N0ω(κ) + α(‖d‖∞) , (16)

for some α ∈ K∞.
The proof of Theorem 1 is provided in Section V. Let

us now discuss some important aspects of this theorem. To
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M2(κ)
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Fig. 1. Illustration of the set construction. The sublevel sets for system 1
are in red and the sublevel sets of system 2 are in blue.

verify that the hypothesis of Theorem 1 holds, we do not
require the knowledge of the disturbance—besides the fact
that d ∈ D and the vector fields fp in (1) are locally Lipschitz
with respect to d. The average dwell-time bound Na defined
by (14) and the constant N0 in (13) are independent of the
disturbance as well, lending a disturbance-agnostic nature
to Theorem 1. Furthermore, from the expression of ω̄ in
(16) it follows that the setM(µ(κ)1+N0ω(κ)) in (13) is the
compact trapping set Ω2(0) in (15) for d ≡ 0. Hence, we
can interpret Theorem 1 as a robustness result which states
that, if the 0-input (d ≡ 0) switched system is practically
stable with respect to Ω1 and Ω2(0), then, for sufficiently
small disturbances, the disturbed switched system (5) is
also practically stable with respect to Ω1 and Ω2(‖d‖∞),
as defined in (15).

To facilitate implementation of Theorem 1 in applications,
we provide the procedure to obtain N0 and Na. First, choose
a κ > 0 and compute ω(κ) and µ(κ) as defined in (10) and
(12), respectively. Then, obtain N0 for which (13) holds and
compute Na using (14). In the event that (13) does not hold
for any N0 ≥ 1 given the selected κ > 0 and the resulting
ω(κ) and µ(κ), try a different κ. It is worth noting that (10)
and (12) cannot—in general—be written analytically, and
their numerical computation can be challenging, particularly
for high-dimensional systems. Nevertheless, if the Lyapunov
functions are quadratic, then analytical upper bounds for
ω(κ) and µ(κ) can be obtained by [16, Proposition 1].

Next, we provide a result analogous to Theorem 1 for
switched systems with a common equilibrium point.

Corollary 1: Consider the switched system (5). Assume
that for each p ∈ P , x∗p = 0 and that there exists a
continuously differentiable function Vp that satisfies (2) and
(3). Furthermore, we assume that for any p, q ∈ P ,

lim sup
‖x‖→0

Vp(x)

Vq(x)
<∞ . (17)

Then, there exist κ > 0 and δ > 0 such that for any d ∈ D
with ‖d‖∞ < δ, and any switching signal σ that satisfies (7)
with N0 ≥ 1 and Na ≥ Na, where Na is as defined in (14),
the switched system (5) is practically stable with respect to
Ω1 and Ω2(‖d‖∞) ⊂

◦
B as defined in (15).

The proof of Corollary 1 is provided in Section V. A few
remarks are now in order. It can be noted that, similarly



to Theorem 1, Corollary 1 does not require knowledge of
the disturbance to provide safety guarantees in the sense
of Definition 1. Another fact worth noting is that the ex-
istence of κ > 0 that satisfies (13) is not an assumption
in Corollary 1; the proof of Corollary 1 establishes that,
in the common equilibrium case, there always exists such
a κ. A consequence of this fact is that N0 ≥ 1 can
be chosen arbitrarily. Finally, we would like to point out
that assumption (17) appears regularly in the literature of
switched systems with a common equilibrium, albeit in a
different form. Essentially, it ensures that, on switching, the
Lyapunov functions remain bounded; see [6, p. 58].

V. PROOF OF THE MAIN RESULTS

In the forthcoming lemma we will show that the Lyapunov
function Vp is also an ISS-Lyapunov function for all x ∈ Bp
and sufficiently small disturbances.

Lemma 1: Let Vp be a continuously differentiable Lya-
punov function that satisfies (2) and (3) for the 0-input
system (1). Then, there exists a δp > 0 such that for any
x ∈ Bp and d ∈ D with ‖d‖∞ < δp the following holds

∂Vp
∂x

fp(x, d) ≤ −λVp(x) + α̃(‖d‖∞) , (18)

where α̃ ∈ K∞.
Proof: Since Vp is continuously differentiable and Bp

is compact, there exists a M > 0 such that∥∥∥∥∂Vp∂x (x)

∥∥∥∥ ≤M (19)

for all x ∈ Bp. Next, let δp > 0. Then, Bp × Bδp(0) ⊂
Xp×Rm is a compact set. Since, locally Lipschitz functions
on compact sets are Lipschitz, it follows that there exists
L > 0 such that for all (x1, d1) and (x2, d2) in Bp×Bδp(0),

‖fp(x1, d1)− fp(x2, d2)‖ ≤ L
(
‖x1 − x2‖+ ‖d1 − d2‖∞

)
,

(20)
and we have
∂Vp
∂x

fp(x, d) =
∂Vp
∂x

fp(x, 0) +
∂Vp
∂x

(fp(x, d)− fp(x, 0))

≤ −λVp(x) +ML‖d‖∞ , (21)

where (21) follows by using (3), (19), and (20). Finally,
choosing α̃(‖d‖∞) = ML‖d‖∞ completes the proof.

Now we are ready to present the proof of Theorem 1.
Proof: [Theorem 1] This proof follows from suitably

restricting [16, Corollary 4]. By Lemma 1, for each p ∈
P , there exists a δp > 0 such that for any d ∈ D with
‖d‖∞ < δp, the functions Vp satisfy (2) and (18) for x ∈
Bp. Restricting attention to the interior

◦
B of the intersection

B :=
⋂
p∈P Bp, which was defined in (4), and taking δ′ =

minp∈P δp we have that for any d ∈ D with ‖d‖∞ < δ′, the
functions Vp, p ∈ P , satisfy the conditions (2) and (18) for
all x ∈

◦
B. These conditions are identical to those required

by [16, Corollary 4], with the difference that here they hold
only “locally” over

◦
B ⊂ Rn instead of “globally” over Rn

as in [16, Corollary 4]. The rest of the proof is dedicated to
identifying an appropriate bound δ > 0 on the disturbance

signal d ∈ D that allows the translation of [16, Corollary 4]
to the local domain.

By the assumptions of the theorem, there exists a pair
(N0, κ) with N0 ≥ 1 and κ > 0 such that condition (13) is
satisfied; in what follows we work with such pair (N0, κ).
Define the time it takes a solution to exit the set

◦
B as

T := inf{t ≥ 0 | x(t) ∈ Rn\
◦
B} . (22)

Following steps identical to those in the proof of [16,
Corollary 4], we have that for any switching signal that
satisfies (7) with N0 and Na as in (14), and for any d ∈ D
with ‖d‖∞ < δ′ with δ′ = minp∈P δp,

x(0) ∈
⋂
p∈P
Mp(ω(κ)) =⇒ x(t) ∈M(ω̄(‖d‖∞)) , (23)

for all 0 ≤ t < T , where ω̄ is defined by (16) for a suitable
α ∈ K∞. We make the following claim.
Claim: Let δ ∈ (0, δ′) be chosen so that

M(ω̄(δ)) ⊂
◦
B . (24)

Then, for any solution of (5) for switching signals that satisfy
(7) with N0 and Na as in (14), any x(0) ∈

⋂
p∈PMp(ω(κ)),

and for any d ∈ D with ‖d‖∞ < δ, we have that T → ∞
and therefore (23) holds for all t ≥ 0.

This claim implies that (5) is practically stable with respect
to the sets Ω1 and Ω2 defined in (15), and its proof is
provided in the appendix. To complete the proof of the
theorem, we only need to satisfy the assumptions of the
aforementioned claim; in particular, we will establish the
existence of a δ > 0 such that (24) holds.

Let ∂B be the boundary of B. Condition (13) implies that
M(µ(κ)1+N0ω(κ)) lies entirely in the interior of B, and so
∂B does not contain any x ∈M(µ(κ)1+N0ω(κ)). Hence,

∀p ∈ P, Vp(x) > µ(κ)1+N0ω(κ), ∀x ∈ ∂B . (25)

Let
κ := min

p∈P
min
x∈∂B

Vp(x) , (26)

which is well-defined because ∂B is compact and P is finite.
From (25), it follows that κ > µ(κ)1+N0ω(κ). Let 0 < c <

κ − µ(κ)1+N0ω(κ), and shrink 0 < δ < δ′ if necessary to
ensure 0 < δ < α−1(c), where the function α is the one
participating in the definition of ω̄ by (16). Then, for any
p ∈ P , and any x ∈Mp(ω̄(δ)),

Vp(x) ≤ µ(κ)1+N0ω(κ) + α(δ)

< µ(κ)1+N0ω(κ) + c < κ . (27)

With the choice of δ as above we claim that (24) holds.
Assume ad absurdum that (24) does not hold. Then, there
exists a x̂ ∈ Mp(ω̄(δ)) for some p ∈ P , which lies in
∂B. However, this implies that Vp(x̂) ≥ κ leading to a
contradiction with (27). Hence, (24) holds for 0 < δ <
min{δ′, α−1(c)} with α a suitable class-K∞ function and
c ∈ (0, κ − µ(κ)1+N0ω(κ)) for κ defined by (26), thus
satisfying the requirement of the claim. Practical stability
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Fig. 2. Illustration of the set construction in the proof of Corollary 1. The
sublevel sets for system 1 are in red and for system 2 are in blue.

of (5) with respect to the sets defined in (15) follows from
that claim, completing the proof of Theorem 1.

Now we present the proof of Corollary 1.
Proof: [Corollary 1] We need to show that there exists a

κ > 0 such that (13) holds; then, Corollary 1 follows directly
from Theorem 1. Before finding such a κ, we provide a
bound µ on µ(κ) that is independent of κ. Note that µp(κ)
in (11) monotonically increases as κ decreases. Hence,

µ(κ) ≤ lim sup
κ→0

µ(κ) =: µ <∞ , (28)

where the boundedness is an outcome of (17).
Next, we proceed with finding a κ > 0 such that (13)

holds. First, construct a ball of radius δB > 0, centered
at 0 that lies within

◦
B; such an open ball exists because

0 ∈
◦
B and

◦
B is open. Then, we “fit” a union of sublevel

sets M(κB) inside BδB(0) as shown by the larger (unfilled)
ellipses in Fig. 2. To establish the existence of such a union
of sublevel sets, let α ∈ K∞ be as in (2), then choose
κB ∈ (0, α(δB)) which ensures thatM(κB) ⊂ BδB(0). Now,
we construct the smaller open ball in Fig. 2 by choosing
δκ ∈ (0, α−1(κB/µ

1+N0)) where α ∈ K∞ is defined in
(2), µ is given by (28) and N0 ≥ 1 is arbitrary. This
ensures that Bδκ(0) ⊂

⋂
p∈PMp(κB/µ

1+N0). Finally, we
construct M(κ) shown by the smaller (filled) ellipses in
Fig. 2 by choosing κ ∈ (0, α(δκ)), which ensures that
M(κ) ⊂ Bδκ(0) ⊂

⋂
p∈PMp(κB/µ

1+N0). Therefore, for
any p ∈ P and x ∈ M(κ), we have Vp(x) < κB/µ

1+N0 ,
which, by (10), ensures that ω(κ) < κB/µ

1+N0 , alternatively
expressed as µ1+N0ω(κ) < κB. Hence, by (28), we also have
µ(κ)1+N0ω(κ) < κB implying that M(µ(κ)1+N0ω(κ)) ⊂
M(κB) ⊂

◦
B, establishing (13) with N0 = N0 ≥ 1.

VI. EXAMPLE

Consider the family of continuous-time systems indexed
by p ∈ P := {1, 2, 3},

ẋ(t) = Apx(t) +Bp + d(t) , (29)

where x ∈ R2, Ap ∈ R2×2, Bp ∈ R2, and d : R+ → R2 is a
disturbance signal. The family of systems (29) is borrowed
from [12, Section 4.2] and hence, in the interest of space, we
do not provide the exact expressions of Ap and Bp here. We

only mention that the equilibrium points of the members of
(29) are x∗1 = [0, 1]T, x∗2 = [−1, 0]T, and x∗3 = [1, 0]T and
that each equilibrium is exponentially stable as Ap is Hurwitz
for each p ∈ P . Suppose now that for safe operation, we
require solutions to stay within a compact set B plotted by the
dashed black ellipse in Fig. 3. In what follows, we compute
an average dwell-time bound for the family of systems using
Theorem 1, and demonstrate that the solutions stay within

◦
B

in the presence of sufficiently small disturbances.
As in [12], we choose V1(x) = x21 + (x2 − 1)2, V2(x) =

(x1 + 1)2 + x22, and V3(x) = (x1 − 1)2 + x22 as Lyapunov
functions for subsystems 1, 2, and 3, respectively. The
uniform convergence rate for these subsystems is λ = 2.
The safe set B is chosen as the sub-level set B := {x ∈
R2 | V1(x) ≤ 730} and is denoted by the dashed black
ellipse in Figs. 3(a) and 3(b). With κ = 10, we obtain an
upper bound for µ(κ) and ω(κ) using [16, Proposition 1] as
2.66 and 27, respectively. Choosing N0 = 1.1 ensures that
M(µ(κ)1+N0ω(κ)) ⊂

◦
B, as required by (13); see Fig. 3(a)

where M(µ(κ)1+N0ω(κ)) is denoted by the union of the
red, green, and magenta ellipses. Furthermore, using (14)
with ε = 0.01, we obtain Na = 0.49 s. We generate a
random switching sequence that satisfies (7) with N0 = 1.1
and Na = 0.49 and implement it on the switched system
with x(0) = x∗3 ∈

⋂
p∈PMp(ω(κ)). It can be seen in

Fig. 3(a) that the solution, denoted by blue, remains within
M(µ(κ)1+N0ω(κ)). Now, we introduce a disturbance d(t) =
[25 sin(

√
2t), 25 sin(

√
3t)]T and continue switching accord-

ing to the average dwell time bound using N0 = 1.1 and
Na = 0.49. The evolution of the state in this case is provided
in Fig. 3(b), where it is seen that the solutions remain
within

◦
B. Similarly, solutions with smaller disturbances also

remained within
◦
B, as expected from Theorem 1.

VII. CONCLUSION

This paper presented a robustness result for switching
among systems with multiple equilibria under disturbances
using the notion of practical stability. It was shown that the
average dwell-time bound for the switching signals obtained
in the absence of disturbances, ensures safety of the switched
system under sufficiently small disturbances. The hypotheses
of Theorem 1 do not require knowledge of disturbances,
thereby, facilitating the design of robust switching policies
in situations where the disturbances are not known a priori.
Although, our motivation for these results arises from motion
planning of dynamic robots [8], [23], they are relevant to a
much broader class of applications.

APPENDIX

Proof: [Claim] We will prove this claim by contra-
diction. Assume ad absurdum that M(ω̄(δ)) ⊂

◦
B and

that solutions x(t) starting at x(0) ∈
⋂
p∈PMp(ω(κ)) and

evolving under d ∈ D with ‖d‖∞ < δ must leave
◦
B in finite

time T > 0. First, note that for any d ∈ D such that ‖d‖∞ <
δ, ω̄(‖d‖∞) < ω̄(δ) from (16). Hence, M(ω̄(‖d‖∞)) ⊂
M(ω̄(δ)), which further leads to M(ω̄(‖d‖∞)) ⊂

◦
B by



−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

x1

x
2

(a)

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

x1

x
2

(b)
Fig. 3. Switching among members of the family (29) with switching signals obtained from Theorem 1. The safe comapct set B is denoted by black dashed
ellipse, the red, green, and magenta ellipses are M1(µ(κ)1+N0ω(κ)), M2(µ(κ)1+N0ω(κ)), and M3(µ(κ)1+N0ω(κ)), respectively. (a) Switching in
the absence of disturbances. (b) Switching in the presence of the disturbance d(t) = [25 sin(

√
2t), 25 sin(

√
3t)]T .

the assumption of the claim. Now, by (23) we have that
x(t) ∈ M(ω̄(‖d‖∞)) for all t ∈ [0, T ) and since x(t)
is continuous we have that x(T ) = limt↗T x(t) is well
defined. Furthermore, since M(ω̄(‖d‖∞)) is compact, we
have x(T ) ∈ M(ω̄(‖d‖∞)) so that the solution x(t) ∈
M(ω̄(‖d‖∞)) over the closed interval [0, T ]. On the other
hand, sinceM(ω̄(‖d‖∞)) ⊂

◦
B we also have that x(T ) must

be in the open set
◦
B. Invoking continuity of x(t) again,

there must exist a δT > 0 such that x(t) ∈
◦
B for all

T < t < T +δT , which implies that T cannot be the greatest
lower bound on the exit time, leading to a contradiction with
the definition of T in (22). As a result, M(ω̄(‖d‖∞)) ⊂

◦
B

leads to T →∞ and thus (23) holds for all t ≥ 0.
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