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Abstract— This paper presents a method for navigating 3D
dynamically walking bipedal robots amidst obstacles. Our
framework relies on composing gait primitives corresponding to
limit-cycle locomotion behaviors and it produces nominal mo-
tion plans that are compatible with the system’s dynamics and
can be tracked with high fidelity. The low-level controllers of
the biped are designed within the Hybrid Zero Dynamics (HZD)
framework. Exploiting the dimensional reduction afforded by
HZD and properties of invariant sets of switching systems
among multiple equilibria, we obtain polynomial approxima-
tions of a reduced order Poincaré map and of the net change of
the center of mass location over a stride. These polynomials are
then incorporated in a high-level Rapidly Exploring Random
Tree (RRT) planner to generate nominal plans which are
tracked by the biped with drastically low drifting errors,
without adversely affecting the time for computation.

I. INTRODUCTION

In the interest of planning speed, motion planners for
robotic systems often assume a finite collection of actions
that are composed to construct plans according to desired
specifications [1]. In the context of dynamically walking1

bipeds, these finite actions correspond to limit-cycle loco-
motion behaviors, the concatenation of which can generate
more complex walking motion plans. However, these plans
capture only a subset of the range of all possible behaviors
exhibited by the system, thereby limiting the planner in its
ability to construct paths that can be faithfully realized by
the biped. As a result, a discrepancy between the suggested
plan and the one followed by the system arises [2], [3].
This paper proposes a method to reduce this discrepancy
by providing the planner access to suitable approximations
of the underlying dynamics of the system.

The past two decades have seen a surge in the interest of
planning motions with humanoid robots in high-dimensional
environments; the book [4] contains a wide collection of
algorithms for tasks involving whole-body motions of such
systems. These algorithms are greatly facilitated by the
analytical nature of the Zero Moment Point (ZMP) criterion
of stability. Unlike ZMP-based walkers, much of the research
on dynamically walking bipedal robots concentrates on the
design of low-level control policies for stability and robust-
ness, in isolation from high-level motion planning objectives.
Various approaches can be found in the relevant literature;
these include, for example, geometric reduction [5], virtual
holonomic constraints [6], hybrid zero dynamics (HZD) [7],
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1Here the term “dynamically walking” indicates limit-cycle walkers.

and partial hybrid zero dynamics [8]. A general framework
for feedback motion planning has been proposed in [9]
to enlarge the basin of attraction of desired goal regions
in the state space, and can find application to limit-cycle
walkers. Robustness to parameter uncertainty has been ad-
dressed in [10], [11], and to rough terrain in [12], [13].
Recently, limit-cycle walking under the influence of persis-
tent exogenous force commands has been studied in [14],
[15] for the purpose of collaborative human-robot object
transportation [16].

Relative to ZMP-based walkers, motion planning to
achieve high-level objectives—such as avoiding unsafe re-
gions in the workspace—has received less attention in the
context of dynamically walking bipeds. An instance of such
tasks is footstep planning, in which a biped is required to
carefully plan its steps to conform to terrain geometry. Ex-
ploiting the analytical tractability of HZD for planar bipeds,
[17] generates feasible walking paths on known uneven
terrain by using an energy-based planner to construct suitable
sequences of motion primitives. Recently, [18] proposed an
efficient method for safety-critical footstep planning that
combines control barrier functions with control Lyapunov
functions to provide guarantees of performance.

Beyond planar settings, navigation of 3D limit-cycle walk-
ers in environments cluttered by obstacles with the purpose
of reaching a desired goal location has only been treated
in [2] and subsequently in [3]. The work in [2] introduced a
framework for such tasks by formulating motion planning
as a discrete switched system over a finite collection of
gait primitives corresponding to nominal walking arcs. A
rigorous analysis of the resulting switched system has been
undertaken in [3], where an explicit expression of a dwell-
time constraint that guarantees stable execution of a nominal
plan has been obtained, together with analytical descriptions
of compact regions in the state space in which the systems’s
state is guaranteed to remain as the plan is executed. How-
ever, both [2], [3] rely on a finite collection of nominal
walking arcs passed as actions to the planner, which—as it
constructs a plan—is ignorant of the evolution of the system
in response to the planned actions. This causes the biped to
drift as it executes the suggested plan, even in the absence
of external perturbations. The objective of this paper is to
provide a method for alleviating this drift.

This paper employs a fairly generic underactuated 3D
bipedal robot model to extract a finite collection of limit-
cycle walking behaviors. Formulating motion planning as a
discrete switched system with multiple equilibria, and taking
advantage of the dimensional reduction afforded by the
HZD method, we provide explicit characterizations of low-



dimensional regions where the system’s state is “trapped.”
Meshing these trapping regions, allows the representation of
the actions available to the planner as polynomials of the
biped’s state, resulting in approximate walking arc functions.
This way the dynamics of the biped can be accessed by
the planner without adversely affecting the computational
time. As a result, the suggested plans are compatible with
the system’s capabilities, and can be executed with minimal
drift. To provide a sense of the improvement afforded by
the proposed method, in an environment used in [2], [3],
the final drift for an 85 stride long plan was just 3.40mm
compared to 2.59m in [2] and 1.20m in [3]. This drastic
improvement is attributed to the planner’s knowledge of the
low-level dynamics of the system.

II. MODELING AND CONTROL

The 3D bipedal model considered here has two legs with
knees, a non-trivial hip, and a torso; see Fig. 1. The thigh
and the shin are connected at the knee with an one degree
of freedom (DoF) revolute joint, and the hip and the thigh
are connected with a two DoF revolute joint. The contact
between the toe and the ground is modeled as a three DoF
spherical joint. The model has nine DoFs q := (q1, ..., q9)
with seven actuators placed at all joints other than the
yaw q1 and pitch q2 of the stance foot, thereby yielding
2 degrees of underactuation. The configuration space Q
contains physically realizable configurations of the biped.

The non-zero hip width results in different dynamics for
the left and right stance foot support; see [19, Section 2]. The
rest of this section provides a model of the left foot stance
phase. The model and the controller for the right leg support
can be developed in a similar manner. Further details can be
found in [19] so the exposition here will be terse.

Let x̂ = (qT, q̇T)T ∈ T Q := {(q, q̇) | q ∈ Q, q̇ ∈ R9}
be the state. For future use, note that x̂ = (q1, x

T)T. The
dynamics during the swing phase can be represented by

˙̂x = f(x̂) + g(x̂)u , (1)

where u ∈ R7 is the vector of control inputs. The vector
fields f and g are defined accordingly.

The swing phase terminates when the toe of the swing leg
reaches the ground. The set of states for which a valid impact
of the swing toe with the ground occurs is represented by

S := {(q, q̇) ∈ TQ | pv
toe(q) = 0, ṗv

toe(q, q̇) < 0} , (2)

where pv
toe denotes the height of the swing foot. The impact

of the swing foot with the ground is assumed to be perfectly
inelastic, i.e., the swing foot does not slip or rebound. The
physics of the impact as well as the change of coordinates
post impact are captured by the mapping ∆ : S → T Q

x̂+ = ∆(x̂−) . (3)

The controller to be used in the remainder of the paper is
designed within the HZD framework. The following output
is associated to the swing phase dynamics (1)

y = h(q) := qa − hd(θ(q)) ,
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Fig. 1. Robot model with a choice of generalized coordinates when
supported on left leg.

where θ(q) := −q2− q4/2. We restrict our attention to gaits
in which θ(q) increases monotonically during the step. The
controlled joints are qa := (q3, ..., q9). The desired evolution
hd(θ) of the controlled joints is designed according to [19,
Section 3], and the zero dynamics surface

Z := {(q, q̇) ∈ T Q | y = 0, ẏ = 0} (4)

is rendered invariant during the swing phase as shown in (4).
To ensure hybrid invariance, i.e., invariance under the

action of ∆, an additional correction term, hc(θ, yi, ẏi), is
added to the output

ỹ = h̃(q, yi, ẏi) := qa − hd(θ)− hc(θ, yi, ẏi) , (5)

which depends on the values yi and ẏi at the beginning of
the step of the output and its derivative, respectively. Details
on hc can be found in [19, Section 3.3]. We only mention
that hc vanishes by the middle of the step.

To realize turning, the output function (5) is further
modified as in [19, Section 4.3] by adding an extra term

ỹp = h̃p(q, yi, ẏi) := qa − hd(θ)− hc(θ, yi, ẏi)− hs(θ, βp) ,

where hs(θ, βp) is a polynomial of θ with its coefficients
dependent on βp, p ∈ P where P is a finite index set
representing different turning primitives. Further ahead we
define gait primitives by choosing different βp. The zero
dynamic surface associated with a primitive p ∈ P

Z̃p := {(q, q̇) ∈ T Q | ỹp = 0, ˙̃yp = 0} (6)

is rendered hybrid invariant under the effect of the control
law u∗p(x) = −LgLf h̃p(x)−1L2

f h̃p(x).
The Poincaré map P̂p : S → S [19, Section 3.2] in closed

loop with u∗p(x), p ∈ P , gives rise to the following discrete
dynamical system

x̂[k + 1] = P̂p(x̂[k]) . (7)

The equivariance of P̂p under yaw rotations q1 established
in [3, Proposition 1], allows us to write (7) as

q1[k + 1] = q1[k] + P q1p (x[k]) , (8)

x[k + 1] = Pp(x[k]) . (9)



Let x∗p be a locally exponentially stable fixed point of (9).
A gait primitive can be defined as a pair Gp = {Pp, x∗p}, and
it corresponds to a locally exponentially stable limit cycle
associated with a particular walking gait of the biped.

III. MOTION PLANNING AS A SWITCHED SYSTEM

Switching between different gait primitives Gp is equiv-
alent to switching among different systems Pp defined as
in (9) with corresponding fixed points x∗p. A motion plan
consists of a concatenation of these gait primitives, and can
be treated as a switching signal σ : Z+ → P that maps the
stride number k to the p-th Poincaré map, giving rise to the
discrete switched system

x[k + 1] = Pσ(k)(x[k]) . (10)

It should be mentioned that (10) differs from the systems
studied in [20], in that it switches among vector fields that
do not share a common equilibrium point. Hence, under
persistent switching, (10) will not converge to a single
equilibrium. However, [3, Theorem 1] shows that if the
frequency of the switching signal is sufficiently low, the
solution of (10) remains in a compact set M provided that
suitable initial conditions are supplied. Furthermore, this
compact set can be explicitly characterized as the union
of sub-level sets of Lyapunov functions, and is essential in
approximating the dynamics of the biped in a form suitable
for planning purposes, as in Section IV-C below.

To construct M, let D ⊂ S be an open connected set
within which Pp is defined for all p ∈ P . A continuous
function Vp : D → R is an exponential Lyapunov function,
if for all x ∈ D

χp,1(‖x− x∗p‖) ≤ Vp(x) ≤ χp,2(‖x− x∗p‖) , (11)

Vp(x[k + 1]) ≤ εVp(x[k]) , (12)

where χp,1, χp,2 are class-K functions [21, Section 4.4], and
0 < ε < 1. For each p ∈ P , let Np(κ) := {x ∈ D : Vp(x) ≤
κ} and let the union of these sets over all p ∈ P be N (κ) :=⋃
p∈P Np(κ). Next, define ωp(κ) := maxx∈N (κ) Vp(x), and

let ωmax(κ) and ωmin(κ) be the maximum and minimum of
ωp(κ) over the finite index set P , respectively. LetMp(κ) :=
{x ∈ D : Vp(x) ≤ ωp(κ)} and define

M(κ) :=
⋃
p∈P
Mp(κ) , M(κ) :=

⋂
p∈P
Mp(κ) .

By construction N (κ) ⊂M(κ) and M(κ) is connected.
For the solution to remain in M(κ), a constraint on the

switching frequency is required. To express this constraint,
let Nd be the dwell time of the switching signal σ(k) defined
as the least number of strides between any two consecutive
switches. Then, the following theorem provides a lower
bound on the dwell time, which guarantees that a solution
starting in M(κ) will stay in M(κ).

Theorem 1: Consider (10) and assume that for each p =
σ(k) ∈ P there exists a function Vp : D → R that satisfies
(11) and (12). Let µ(κ) > 1 be such that

Vpi(x)

Vpj (x)
≤ µ(κ), ∀pi, pj ∈ P, ∀x ∈ D \ N (κ) .

Assume further that the dwell time Nd ∈ Z+ of σ satisfies

Nd ≥
log
(
µ(κ)ωmax(κ)

ωmin(κ)

)
log(1/ε)

. (13)

Then, for every initial condition in the setM(κ), the solution
of (10) remains in M(κ).
A proof of Theorem 1 can be found in [3].

In what follows, we particularize these constructions to
plan motions for 3D bipedal robots controlled using HZD.
We will focus on the implications of Theorem 1 in facilitating
the computation of approximate state update maps to be used
as actions by the planning algorithm, thereby informing the
planner of the underlying dynamics.

IV. GENERATING WALKING ARCS

In this section we exploit the dimensional reduction af-
forded by HZD and discuss walking arcs that are provided
to the planner as actions available for planning.

A. HZD Reduction

We switch between different gait primitives at the be-
ginning of the stride. The turn-inducing output hs(θ, βp)
and the correction hc(θ, yi, ẏi) are chosen such that they
vanish by the end of the stride [19, Section 4.3]. This
ensures that, despite switching, the state always evolves on
the corresponding Z̃p of (6), and that by the end of the
stride S ∩ Z̃p = S ∩ Z , where Z is defined in (4) and does
not depend on p. This property greatly facilitates planning
by allowing us to limit our attention on the 3 dimensional
surface S ∩Z instead of the 17-dimensional S. The reduced
Poincaré map is then defined as the restriction ρ̂p := P̂p|S∩Z .

With ẑ = (q1, q̇1, θ̇)
T serving as a valid set of coordi-

nates on S ∩ Z and by following arguments similar to [3,
Proposition 1], the restricted Poincaré map takes the form[

q1[k + 1]

z[k + 1]

]
=

[
q1[k] + ρq1p (z[k])

ρp(z[k])

]
=: ρ̂p(ẑ[k]) , (14)

where z = (q̇1, θ̇)
T.

The dimensional reduction discussed above allows the
definition of low-dimensional gait primitives Rp = {ρp, z∗p},
where z∗p is a locally exponentially stable fixed point of

z[k + 1] = ρp(z[k]) . (15)

B. Nominal Walking Arcs

The dimensionally reduced gait primitives Rp can be used
to extract basic planning actions in the form of nominal
walking arcs (NWAs). Each NWA corresponds to a path
realized in the biped’s workspace as it follows a limit-cycle
gait primitive Rp. NWAs are made available to the planning
algorithm in a discrete form, effectively capturing the net
change in the Cartesian position of the center of mass (CoM)
and in the heading direction of the biped as it moves along
a limit-cycle gait primitive Rp.

To represent NWAs in a form suitable for planning pur-
poses note that by (14) the change (δXp, δYp) in the CoM’s
Cartesian position over a stride is independent of q1 when



it is expressed in a frame of reference attached to the
stance toe and aligned with the current heading direction.
Hence, (δXp, δYp) depends only on the state z, and so
does the change δq1,p in the heading angle. Given an initial
state z, computing {δq1,p(z), δXp(z), δYp(z)} for the p-th
gait primitive would require evaluating the corresponding
Poincaré map ρp at z as in (15). This process involves the
numerical integration of the hybrid zero dynamics, which
despite its reduced dimension, would slow down the planning
process considerably. This can be avoided by admitting a
set of actions available to the planner that corresponds to a
discrete set of fixed points z∗p ; namely

A∗p(z∗p) := {δq1,p(z∗p), δXp(z
∗
p), δYp(z

∗
p)} . (16)

In other words, the actions (16) provided to the planner can
be thought of as output functions of the discrete system
(15) evaluated at the corresponding fixed point z∗p ; see [2,
Table I,II] and [3, Table I].

The fact that the planning algorithm has available a
discrete collection of actions {A∗p(z∗p), p ∈ P} significantly
reduces the time required to compute feasible plans. How-
ever, the actual state of the system z may not coincide
with the corresponding fixed point z∗p when the planner
requires the execution of an action A∗p(z∗p), thereby causing
the system to drift from the suggested plan. This problem
arises even under nominal conditions—i.e., in the absence of
externally applied perturbations—due to the concatenation of
the actions suggested by the planner. For example, consider
the situation depicted in Fig. 2 that involves the execution
of two actions. If the state za at the beginning of the
execution coincides with the fixed point z∗1 corresponding to
the intended action A∗1(z∗1), then at the end of the execution
the state zb = z∗1 under nominal conditions. Subsequent
application of a different action A∗2(z∗2) assumes that the
system starts at state z∗2 which does not agree with zb,
thereby resulting in an error at the end of the execution.
In effect, this error arises because the system (15) switches
among different equilibrium points.

This error accumulates over the steps, resulting in possibly
large drifts by the end of the plan depending on the envi-
ronment [2]. The explicit characterization of the “trapping”
regions M(κ) provided by Theorem 1 can help reduce this
drift, as can be seen in [3]. Indeed, by selecting a smaller
κ, the size of M(κ) can be reduced, forcing the state z
to evolve nearer to the fixed points z∗p . On the other hand,
reducing the value of κ requires an increase in the dwell time
Nd. Intuitively, to avoid large excursions in the evolution of

d
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b

Fig. 2. Illustration comparing actual path taken by the biped (blue) and
the path predicted using NWA (dashed red).

the state z, the system would have to wait long enough on a
specific gait primitive before it is allowed to switch to a new
one. Clearly, this strategy greatly reduces the flexibility of
the planner to generate motion plans in environments with
“tight” workspaces.

C. Approximate Walking Arc Functions

One way to eliminate the drift associated with NWAs and
the corresponding actions would be to allow the planner to
compute (δXp, δYp) and δq1,p at a point z, which may not
be the fixed point of the intended action. As a result, the
planner needs to keep track of the low level state z, which
can be achieved by augmenting the set of actions with the
Poincaré map corresponding to the intended gait primitive,
forming walking arc functions (WAFs); i.e.,

Ap(z) := {ρp(z), δq1,p(z), δXp(z), δYp(z)} . (17)

In more detail, if the action Ap is implemented at step k,
the planner computes (δXp, δYp) and δq1,p based on the state
z[k] to advance the position and orientation of the biped, and
computes the prediction ρp(z[k]) to be used at the next step2.

In the absence of perturbations, planning with WAFs
instead of NWAs results in motion plans realized by the
biped with no drift. However, this is achieved at the expense
of computing the Poincaré map, which, as was mentioned
above, entails significant computational burden. In what
follows, we will exploit Theorem 1 and properties of the
associated set constructions to obtain approximate walking
arc functions (AWAF), which will then be used to provide
actions to the planner as

Ãp(z) := {ρ̃p(z), δq̃1,p(z), δX̃p(z), δỸp(z)} , (18)

where the symbol “ ˜ ” represents a suitable approximation of
the corresponding function. The approximate actions Ãp(z)
can be computed efficiently at any point z in their domain,
thus drastically decreasing the error associated to the actions
A∗p(z∗p) based on NWAs.

To obtain valid approximations to be used in (18), poly-
nomial functions will be fitted to the values ρp(z), δq1,p(z),
δXp(z), and δYp(z) of the actions in (17) at points z
of an appropriately dense mesh of the set S ∩ Z over
which (15) evolves. Clearly, meshing S ∩Z can be tedious.
However, Theorem 1 significantly simplifies the process, for
it establishes conditions under which the evolution of the
system is confined in the subset M(κ) ⊂ S ∩ Z . Thus, it
allows one to restrict the mesh to the region M(κ), which
in addition admits an explicit characterization.

In more detail, to apply Theorem 1, we use quadratic
functions Vp(z) = zTSpz, where Sp is the solution of the
discrete Lyapunov equation of the linearization of (15) about
a fixed point z∗p . Sums-of-squares (SOS) programming [9] is
then employed to estimate the region over which Vp is a
valid Lyapunov function according to (11)-(12). The details
can be found in [3, Section V-C] and are not given here for

2Note that advancement of the state is necessary since the planner works
offline to generate a priori motion plans.
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Fig. 3. Mesh used for obtaining AWAF for a collection of gait primitives.
Grey stars denote the nodes of the mesh. The evolution of (15) is trapped
in M(κ), which is the union of the sub-level sets of the corresponding
Lyapunov functions, and lies entirely in BR defined by (19). Note thatM2

and M3 corresponding to the fixed points z∗2 and z∗3 almost overlap.

space limitations. Figure 3 shows the sub-level sets of Vp
associated with three fixed points, the union of which is the
set M(κ) required by Theorem 1. If the initial condition is
in the intersection of the sub-level sets3, i.e. z[0] ∈ M(κ),
selecting Nd according to (13) ensures that the system never
escapes fromM(κ). To construct a mesh that coversM(κ),
let z̄∗ be the centroid of the fixed points z∗p for all p ∈ P
and choose R > 0 large enough so that

BR(z̄∗) := {z ∈ S ∩ Z : ‖z − z̄∗‖∞ ≤ R} , (19)

includes the set M(κ). An appropriately dense mesh size
on BR can then be selected and the nodes of the mesh
are extracted. The functions ρp, δq1,p, δXp, and δYp can
then be computed at each node of the mesh and fitted with
polynomials of sufficiently high degree using least square
minimization, resulting in the approximations used in (18).

V. MINIMIZING DRIFT THROUGH AWAFS

This section evaluates the performance of AWAFs in
comparison to NWAs. The AWAFs are subsequently used to
navigate the 3D biped in environments cluttered by obstacles.

A. Comparing AWAFs versus NWAs

For concreteness, we consider a set of three gait primitives
{R1,R2,R3}, where R1 corresponds to the biped walking
straight, and R2 and R3 to the biped turning by 45o and
−45o, respectively. As described in Section IV-C, applying
Theorem 1 with SOS-verified Lyapunov functions it is found
that for κ = 0.0002 any plan satisfying Nd ≥ 1 will not
result in loss of stability. The setM(κ) can then be computed
and R = 0.05 is chosen to construct the set BR which is
discretized using a mesh of 400 nodes, as in Fig. 3.

In deriving the approximate actions used in (18), it is
convenient to replace (δXp(z), δYp(z)) with their polar
counterparts lp(z) = ‖(δXp(z), δYp(z))‖ and sp(z) =

3Since nominal plans are generated, it can always be imposed that the
initial state of (15) corresponds to a fixed point which belongs in M(κ).

arctan(δYp(z)/δXp(z)). Then, for each primitive Rp, the
functions ρp(z), δq1,p(z), lp(z), and sp(z), are computed
at the nodes of the mesh, and their approximations ρ̃p(z),
δq̃1,p(z), l̃p(z), and s̃p(z) are derived as polynomials of
degrees 3, 6, 3, and 5, respectively. It is worth noting that it
takes around 30 s to compute one step of (15) by numerical
integration of the actual dynamics whereas the polynomial
computation requires fractions of milliseconds.

We can now examine the final drift error accumulated by
concatenating actions in A∗p(z∗p) of (16) and Ãp(z) of (18)
corresponding to NWAs and AWAFs, respectively. To do this
50 sequences of actions are generated, each composed by
100 actions randomly chosen from {R1,R2,R3} with equal
likelihood. The actual dynamics (15) of the model is used
to obtain the actual position and orientation of the biped
after the execution of each sequence. The error between the
final position of the biped and of the one resulting from the
actions corresponding to NWAs and AWAFs is recorded in
Table I. Clearly, the average drift recorded using the AWAFs
is drastically smaller than that obtained by NWAs. Figure 4
shows error accumulation for one of the 50 sample sets,
demonstrating that AWAFs significantly outperform NWAs.

TABLE I
FINAL DRIFT ERROR FOR NWAS AND AWAFS

Method Mean [m] Std. Dev. [m] Min [m] Max [m]
NWA 0.6658 0.4692 0.0444 2.1335
AWAF 0.0047 0.0026 0.0005 0.0104

B. Application to Motion planning

This section uses the actions (18) corresponding to AWAFs
in conjunction with a high-level planning algorithm to con-
struct feasible paths taking the biped from an initial position
to a desired final one while avoiding any obstacles on the
way. In what follows, (X,Y ) represent the coordinates of
the CoM of the biped in the global frame and Θ the heading
angle of the biped with respect to the global positive X-axis.
A Rapidly Exploring Random Tree (RRT) [1, Section 5.5] is
employed to find feasible paths. Each node of the associated
tree holds information about (X,Y,Θ), the low-level state of
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Fig. 4. Comparison of drift error between NWA (blue) and AWAF (red)



the biped z, the index of its parent node, and the primitive
index p ∈ P that was applied on the parent node. In addition,
the number of strides n since the last primitive switch on the
path is available in the tree to check the dwell time condition
(13) which the planner must respect.

The tree node k such that (Xk, Yk) has the least euclidean
distance from a randomly chosen point (Xr, Yr) in the free
space among all other nodes, is expanded for each p ∈ P to
obtain the successive node as

Xp
k+1 = Xk + l̃p(zk) cos(Θk + s̃p(zk)) ,

Y pk+1 = Yk + l̃p(zk) sin(Θk + s̃p(zk)) ,

Θp
k+1 = Θk + δq̃1,p(zk) ,

zpk+1 = ρ̃p(zk) .

If (Xp
k+1, Y

p
k+1) is not in the free space, then the corre-

sponding node is pruned. The tree generation continues until
(Xp

k+1, Y
p
k+1) is within a distance γ > 0 of the goal position

or until a maximum number N of iterations is reached.
To demonstrate the power of AWAFs as actions available

to the planning algorithm, the environment of Fig. 5 is
borrowed from [2], [3]. Both methods in [2] and [3] were
successful in generating feasible paths with final drift errors
(assuming the same initial and goal positions) being 2.59m
in [2] and 1.20m in [3]. Using AWAFs, Fig. 5 shows that
despite the length of the path, the biped tracks the nominal
plan almost perfectly, resulting in a final drift error of just
3.40mm! Note that, given that the step length of the biped
is approximately 0.34m, the error for a plan with 85 strides,
i.e. 170 steps, is about 1/100 of the step length.

VI. CONCLUSION

This paper presents a method to reduce the drifting error
observed during the execution of a motion plan by a dynam-
ically walking 3D bipedal robot. Our approach exploits the
dimensional reduction afforded by HZD to obtain actions for
the planner that approximate the evolution of the state of the
biped during the construction of a plan. These actions are
used in an RRT-based planner to generate nominal motion
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Fig. 5. The nominal plan generated using AWAFs (red circles) and the
simulated trajectory of the CoM of the biped (blue line). The initial and
goal locations are (0 m, 0 m) and (25 m, 22 m) and the initial heading
direction is −90o. The biped takes 85 strides to reach the goal (marked by
black rectangle) and the final drift error is 3.4 mm.

plans, which can be faithfully realized by the biped, all
the while stable execution is guaranteed in the absence
of exogenous disturbances. In future work, we intend to
generate motions plans robust to disturbances and validate
our method experimentally. The overall goal of this work is
to facilitate motion planning for high-dimensional systems
with complex low-level dynamic behaviors using established
planning algorithms, and to apply these methods in the
context of dynamically walking bipedal robots.
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