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Abstract— This paper establishes local input-to-state stability
(ISS) of a dynamically (limit-cycle) walking biped under the
effect of persistent exogenous forcing. For applications involving
interaction of a walking biped with an external agent, the biped
should be able to adapt its locomotion to external forces. Local
ISS guarantees a bound on the magnitude of the exogenous
force within which the biped will continue taking steps. On a
point foot biped, a controller is developed within the framework
of hybrid zero dynamics (HZD) to generate an exponentially
stable walking gait in the absence of the external force. The
corresponding HZD is shown to be locally ISS when an external
piecewise constant force acts on the biped. Local ISS for the full-
order biped is then proved under the assumption of sufficiently
fast convergence rates of the transversal dynamics. These results
provide a first step toward a rigorous framework within which
tasks that involve dynamic locomotion under the influence of
external forcing can be analyzed.

I. INTRODUCTION

Collaboration of a dynamically (limit-cycle) walking

bipedal robot with an external agent whose intentions are

not explicitly known to the robot calls for gait adaptation

based on the interaction force, while simultaneously ensuring

that the biped does not fall. This necessitates the design and

analysis of controllers that can harness the interaction force

for gait adaptation without destabilizing the robot. In the

presence of an exogenous force, the notion of exponential

stability does not guarantee good behavior with respect to

the external force. Instead, a broader notion of stability –

namely, input-to-state stability (ISS) – is needed to ensure

that the biped adapts its walking gait to external activity. This

paper establishes local ISS of a dynamically walking biped

that adjusts its speed in accordance to the external force.

Quasi-static bipedal robots have a rich literature of con-

trollers that can handle manipulation and cooperation tasks.

A variety of Zero Moment Point (ZMP) based methods can

be found in [1] for tasks involving exogenous forces. Dynam-

ically stable bipeds still lack in this regard. While various

methods are available for generating stable periodic orbits,

these methods are developed in the absence of any external

force. One such method is the hybrid zero dynamics (HZD)

[2], and its recent extensions [3]–[5]. There are very few

controllers available in the dynamic walking literature that

are designed explicitly taking into account external forces.

Recent work in [6] adopts a null-space control approach

so that the forces external to the locomotion system do

not interfere with it; this approach is suitable for unifying
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manipulation with locomotion tasks. On the other hand, [7],

[8] use the interaction force explicitly for speed adaptation

and will be of particular interest here.

The ISS property has proved useful in stability analysis

of continuous-time nonlinear systems [9], [10] as well as

discrete-time systems [11]. Intuitively, an ISS system exhibits

bounded state trajectories in response to bounded inputs and

the trajectories converge to the nominal motion as the inputs

tend to zero [10]. In our setting, we treat the external force as

an input to the closed loop system and we formally establish

the local ISS property.

We adopt a fairly generic planar model of an under-

actuated biped that is persistently under external forcing.

Then, a HZD controller is developed to generate an exponen-

tially stable periodic motion in the absence of the external

force. When the force is applied, the underactuated biped

responds to the force by favorably changing its speed. In

this setting, the notion of ISS emerges naturally as a suitable

stability concept that treats the external force as an input to

the biped and ensures that it does not destabilize its motion.

We establish local ISS of the full order Poincaré map in

two stages. First we propose an ISS Lyapunov function

that renders the restricted to the zero dynamics manifold

Poincaré map locally ISS. This stage is facilitated by the

availability of the analytical form of HZD. Then, motivated

by the constructions in [3], we propose a candidate for an ISS

Lyapunov function, which is used to establish local ISS for

the full-order Poincaré map, provided that the convergence

rate of the transversal dynamics is fast enough. Our goal is

to provide a framework for rigorously analyzing tasks that

involve physical interaction between a walking biped and a

(robotic or a human) co-worker; see [8] for an example. This

work represents a first step towards such a framework.

This paper is organized as follows. Section II describes the

model and the controller. Section III states our main result

on input-to-state stability, and Section IV provides a proof.

Section V provides numerical evidence validating the results

presented in Section III. Section VI concludes the paper.

II. MODELING AND CONTROL

The bipedal model considered here comprises five links –

a torso and two segmented legs each composed of a thigh and

a shin, as in Fig. 1. The model has four actuators – two for

each leg, actuating its hip and knee joints. A complete step

of the biped consists of a swing phase and an instantaneous

double stance phase. During the swing phase, the stance toe

acts as a passive pivot between the shin of the stance leg and

the ground. It is assumed that the stance toe does not slip
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Fig. 1. Robot model with a choice of generalized coordinates.

when in contact with the ground. The mechanical properties

of the model can be found in [2, Table 6.3].

A. Open-loop Hybrid Model

The configuration space Q of the model is a subset

of [0, 2π)5 containing configurations of the biped that can

be physically realized. Let q := (q1, .., q5)
T be a set of

coordinates on Q, selected to be the relative joint angles

shown in Fig. 1. The swing phase dynamics are written as

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ JT(q)Fe , (1)

where D is the inertia matrix, and Cq̇ and G contain velocity-

and configuration-dependent forces, respectively. The input

u contains the actuator torques applied at the hip and knee

joints, and are mapped to the generalized forces through the

matrix B. Finally, J(q) := ∂pR(q)/∂q, with pR(q) being the

position of the point R on the torso where the exogenous

force Fe acts; see Fig. 1. Choosing x := (qT, q̇T)T as the

state, (1) takes the form

ẋ = f(x) + g(x)u + ge(x)Fe , (2)

where x ∈ TQ :=
{

(qT, q̇T)T | q ∈ Q, q̇ ∈ R
5
}

and the

vector fields f , g, and ge are defined accordingly.

The swing phase is terminated when the toe of the swing

leg lands on the ground; that is, when the solution of (2)

intersects the switching surface

S :=
{

(qT, q̇T)T ∈ TQ | pvE(q) = 0, ṗvE(q, q̇) < 0
}

, (3)

where pvE is the height of the toe E of the swing leg as shown

in Fig. 1. Following [12, Section II-B], the double support

phase is modeled by the map ∆ : S → TQ taking the states

just before impact x− to states just after impact x+; i.e.,

x+ = ∆(x−) . (4)

Combining the swing phase (2) and the instantaneous

double support phase (4), the open-loop model can be

expressed in the form

Σo :

{

ẋ = f(x) + g(x)u + ge(x)Fe, x /∈ S

x+ = ∆(x−), x ∈ S
.

B. Closed-loop Hybrid Model

The controller used in this paper is developed within the

Hybrid Zero Dynamics (HZD) framework [12] with the

assumption that the external force Fe can be measured. To

the swing phase dynamics (2) we associate the outputs

y = h(q) := qc − hdes ◦ θ(q) , (5)

where qc = (q2, q3, q4, q5)
T are the controlled variables; see

Fig. 1. The desired evolution hdes ◦ θ(q) in (5) is parameter-

ized with respect to the absolute angle of the line connecting

the stance toe to the hip joint, θ(q) = q1 + q2 + 1
2q4; see

Fig. 1. For details on how to design hdes see [12].

Differentiating the output (5) twice with respect to time

ÿ = L2
fh(x) + LgLfh(x)u + LgeLfh(x)Fe ,

where L2
fh, LgLfh and LgeLfh are Lie derivatives of

h along the corresponding vector fields; see [2, Ap-

pendix B.1.5] for definitions. Then, under the invertibility of

the decoupling matrix LgLfh and the knowledge of external

force Fe, the input

u∗(x, Fe) = −LgLfh
−1(x)

[

L2
fh(x) + LgeLfh(x)Fe

]

renders the zero dynamics surface

Z := {(q, q̇) ∈ TQ | h(q) = 0, Lfh(q, q̇) = 0}

invariant under the swing phase dynamics. If, in addition to

invariance in continuous time, the output hdes ◦θ(q) in (5) is

designed according to [2, Section 6.2] then ∆(S ∩Z) ⊂ Z;

that is, Z is rendered hybrid invariant. An important obser-

vation made in [7, Section II-B] is that hybrid invariance

of Z is preserved under the action of the external force Fe,

provided that the force is available for feedback.

Attractivity of Z can be achieved by introducing an

auxiliary term ν(y, ẏ) in the control input u∗ so that1

u = −LgLfh
−1

[

L2
fh+ LgeLfhFe + ν

]

, (6)

with the objective of ν being to drive the output (5) to zero.

A number of different controllers can be used for ν; see [3]

for different possibilities. In this paper,

ν(y, ẏ) =
1

ǫ2
KPy +

1

ǫ
KDẏ , (7)

where KP and KD are constant matrices and 0 < ǫ < 1.

Substituting (6)-(7) in Σo results in the closed-loop dy-

namics of the system. It can be shown that, under the

coordinates

η :=
[

1
ǫh(q)

T Lfh(q, q̇)
T
]T

, ξ :=
[

θ ζ
]T

, (8)

where ζ := 1
2 (D1(q)q̇)

2 and D1 is the first row of D in (1),

the closed-loop hybrid system takes the form

Σc :



















ǫη̇ = Aη if (η, ξ) 6∈ S

ξ̇ = fξ(η, ξ) + gξ(η, ξ)Fe

η+ = ∆η(η
−, ξ−) if (η−, ξ−) ∈ S

ξ+ = ∆ξ(η
−, ξ−)

(9)

1Functional dependence has been dropped to avoid cluttering.



where A =

[

0 I

−KP −KD

]

is Hurwitz.

Remark 1: The closed-loop vector fields fξ, gξ, and the

mapping ∆ = [∆T
η ∆T

ξ ]
T are locally Lipschitz, and let Lf ,

Lg, L∆, L∆η
, L∆ξ

be the corresponding Lipschitz constants.

C. Full-order and reduced-order forced Poincaré maps

To keep the technical prerequisites associated with the

definition of the forced Poincaré map at a minimum [13,

Section 3.3.2], we assume that the magnitude and direction of

the external force Fe are allowed to change only at transitions

from one step to the next. Hence, we focus our analysis on

the class F of piecewise constant, right continuous functions

that are bounded; namely,

F :=
{

Fe :

∞
⋃

k=0

[tk, tk+1) → R
2 | Fe(t) = Fk

for all t ∈ [tk, tk+1) and Fsup < F̄
}

,

where k ∈ Z+, F̄ ∈ R+, and2 Fsup := supk∈Z+
‖Fk‖.

Let (η, ξ) ∈ S and let ϕǫ(t,∆(η, ξ), Fk), t ≥ tk, denote

a maximal (forced) solution based on the initial conditions

∆(η, ξ) ∈ TQ of the continuous-time part of Σc given by

(9). The time-to-impact function T ǫ
I : TQ × R

2 → R+ can

then be defined as

T ǫ
I (η, ξ, Fk) :=inf {t ≥ tk | ϕǫ(t,∆(η, ξ), Fk) ∈ S} . (10)

Remark 2: The fact that (10) is well defined follows from

the implicit function theorem in view of the fact that the

unforced time-to-impact function T ǫ
I (η, ξ, 0) is well defined

[12, Section II-C]. Let (η, ξ) ∈ S be some initial conditions

for which T = T ǫ
I (η, ξ, 0) < ∞ and define H(t, η, ξ, Fk) :=

pvE(ϕ
ǫ(t,∆(η, ξ), Fk)). From the definition of S by (3),

H(T, η, ξ, 0) = 0 and ∂H
∂t |(T,η,ξ,0) < 0. Then, by the implicit

function theorem, there exists F̄ > 0 such that for each3

Fk ∈ BF̄ (0), the forced time-to-impact function (10) is well

defined. Furthermore, by [14, Theorem 1.1], T ǫ
I (η, ξ, Fk) is

locally Lipschitz.

To define the Poincaré map, the surface S given by (3) is

taken as the Poincaré section. Then, the full-order (forced)

Poincaré map P̃ ǫ : S × R
2 → S is defined by

P̃ ǫ(η, ξ, Fk) := ϕǫ(T ǫ
I (η, ξ, Fk),∆(η, ξ), Fk) . (11)

Unforced periodic walking motions correspond to fixed

points (η∗, ξ∗) ∈ S of P̃ ǫ; that is, P̃ ǫ(η∗, ξ∗, 0) = (η∗, ξ∗).
Although (η, ξ) is ten-dimensional, the fact that (η, ξ) ∈
S in the definition of P̃ ǫ restricts the dimension of the

system by one. This dimensional reduction is inherent in

the method of Poincaré. Furthermore, the implicit function

theorem guarantees that, locally, in a neighborhood of a fixed

point, the nine-dimensional vector (η, ζ) is a valid set of

coordinates. As a result, the evolution of the system as it

crosses S can be described by the discrete-time system
[

ηk+1

ζk+1

]

=

[

P ǫ
η(ηk, ζk, Fk)

P ǫ
ζ (ηk, ζk, Fk)

]

=: P ǫ(ηk, ζk, Fk). (12)

2Notation: ‖ · ‖ denotes the Euclidean norm.
3Notation: Bδ(x) denotes the open ball of radius δ around x.

The restriction of the Poincaré map P ǫ on Z results in a

reduced-order (one-dimensional) forced Poincaré map ρ :=
P ǫ|Z : (S ∩ Z) × R → S ∩ Z , which can be computed

analytically as in [7, Section III] and is given below for

subsequent use

ρ(ζ, wk) := δ2zζ − v + wk , (13)

where ζ is defined in (8), δz is a constant, and

v := −

∫ θ−

θ+

κ2(ξ)

κ1(ξ)
dξ ,

wk :=

∫ θ−

θ+

1

κ1(ξ)
(κ3(ξ)Fk) dξ ,

where θ+ and θ− are the touchdown and liftoff values of

the angle that connects the toe of the stance leg with the hip

shown in Fig. 1, and κ1, κ2, κ3 are functions defined in [7,

Lemma 1]; the epressions are omitted for brevity. Notice that

the existence of the external forcing Fk emerges in (13) via

the term wk, which intuitively represents the “work” done by

the force along a solution restricted to Z; see [7]. As in the

full-order case, the reduced-order Poincaré map (13) gives

rise to the forced discrete-time dynamical system

ζk+1 = ρ(ζk, wk) , (14)

which will be used in the following section to study the

response of the system to the external force.

III. MAIN RESULT: LOCAL INPUT-TO-STATE STABILITY

Our objective is to understand the dependence of state

trajectories of (12) on the magnitude of an externally ap-

plied force. We are concerned with discrete-time nonlinear

dynamical systems which have the general form

xk+1 = f(xk, uk) , (15)

where xk ∈ R
n and uk ∈ R

m are values of the state and

input variables at the k-th discrete time respectively. Let x∗

be an equilibrium point of the 0-input system; i.e., f(x∗, 0) =
x∗. The following definitions are adapted from [11].

Definition 1: The system (15) is locally input-to-state

stable (LISS), if for all x0 ∈ Bδ(x
∗) there exists a class-

KL function β : R+ × Z+ → R+ and a class-K function

α : R+ → R+ such that for each input u ∈ ℓm∞,

‖xk − x∗‖ ≤ β(‖x0 − x∗‖, k) + α( sup
k∈Z+

‖uk‖)

Definition 2: A continuous positive definite function

V : R
n → R+ is a local input-to-state (LISS) Lyapunov

function if, for all xk ∈ Bδ(x
∗) and for all u ∈ ℓm∞, the

following conditions are satisfied

α1(‖xk − x∗‖) ≤ V (xk) ≤ α2(‖xk − x∗‖) (16)

V (xk+1)−V (xk) ≤ −α3(‖xk−x∗‖)+α4( sup
k∈Z+

‖uk‖) (17)

where α1, α2, α3 and α4 are class-K functions.

Finally, by [11, Lemma 3.5], if (15) admits a LISS-

Lyapunov function as in Definition 2, then (15) is LISS.



In what follows, we assume that an unforced periodic

orbit that lies entirely on Z exists; by hybrid invariance such

periodic orbits correspond to fixed points of (11) that have

the form (0, ξ∗) where ξ∗ = [(θ−)∗ ζ∗]T. With the notation

and definitions provided above, the main result can be stated

as follows.

Theorem 1: Suppose (0, ξ∗) ∈ S where ξ∗ = [(θ−)∗ ζ∗]T

is a 0-input equilibrium point of (11), and ζ∗ ∈ Z ∩ S is

the corresponding 0-input equilibrium point of (14). Suppose

there exists F̄ > 0 such that the forced reduced-order

Poincaré map ρ in (14) is LISS. Then, there exists an ǫ∗ > 0
and a δ > 0 such that for (η, ξ) ∈ Bδ(0, ξ

∗) ∩ S, the

forced Poincaré map P ǫ is LISS for all Fe ∈ F , and for

all ǫ ∈ (0, ǫ∗).

IV. PROOF OF MAIN RESULT

The proof of Theorem 1 is organized in a sequence of

lemmas. We begin with a simple lemma showing that the

reduced system (14) is locally ISS.

Lemma 1: Let ζ∗ ∈ Z ∩S be a 0-input equilibrium point

of (14). Assume that Fe ∈ F and that F̄ > 0 is such that

(13) is well defined. Then, the system (14) is LISS.

Proof: Consider Vζ(ζ) := (ζ − ζ∗)2. Then, by (13),

Vζ(ρ(ζ, wk))− Vζ(ζ) ≤ −c1|ζ − ζ∗|2 + c2|wk| , (18)

where c1 = δ4z (1 − δ4z ) > 0 (by [12, Section IV-A], δz <

1) and c2 =
(

1 +
δ4z

(1−δ4z )
2

)

> 0. By Definition 2, Vζ is a

LISS-Lyapunov function with α1(r) = 0.5r2, α2(r) = 2r2,

α3(r) = c1r
2, α4(r) = c2r, and [11, Lemma 3.5] completes

the proof.

Remark 3: For subsequent use, note that |wk| ≤ c3Fsup,

c3 =

∫ θ−

θ+

‖κ3(ξ)‖

|κ1(ξ)|
dξ , (19)

so that (18) can be re-written as

Vζ(ρ(ζ, wk))− Vζ(ζ) ≤ −c1|ζ − ζ∗|2 + αζ(Fsup) , (20)

where αζ(r) := c2c3r is a class-K function.

The structure of the proof of Theorem 1 follows that of the

proof of [3, Theorem 2]. The appearance of the forcing term

in (12), however, calls for modifications that are necessary

to establish LISS of the forced system (12). The following

lemma establishes the closeness of the ζ-component P ǫ
ζ of

the Poincaré map P ǫ in (12) with its value ρ for ǫ = 0.

Lemma 2: Let (0, ξ∗) be a fixed point of the 0-input

system (11). There exists a δ > 0 such that for all ǫ > 0,

(η, ξ) ∈ Bδ(0, ξ
∗)∩S and Fe ∈ F with F̄ sufficiently small

as in Lemma 1 such that

|P ǫ
ζ (η, ζ, Fk)− ρ(ζ, wk)| ≤ λ‖η‖ (21)

for some λ > 0.

A sketch of the proof of Lemma 2 is given in the Appendix.

With the aid of Lemma 2 we can now proceed with the

proof of Theorem 1

Proof: [Theorem 1] Our objective is to construct a LISS-

Lyapunov function V for the discrete-time nonlinear system

(12). In a way analogous to the proof of [3, Theorem 2], the

resulting LISS-Lyapunov function will have the form

V (η, ζ) := Vζ(ζ) + σVη(η) (22)

where σ > 0 is a parameter determined by the procedure.

1) Construction of Vη: We begin by defining

Vη(η) := ηTSη , (23)

where S satisfies Lyapunov’s equation ATS+SA = −Q for

a symmetric positive definite Q. Following arguments similar

to [3, Section III] it can be shown that V̇η ≤ − γ
ǫ Vη where

γ := λmin(Q)
λmax(S) . By the comparison lemma [15, Lemma 3.4]

Vη(η(t)) ≤ e−γt/ǫVη(η(0)), and since

λmin(S)‖η‖
2 ≤ Vη(η) ≤ λmax(S)‖η‖

2 , (24)

we have

Vη(P
ǫ
η (η, ζ, Fk)) ≤ e−γT ǫ

I (η,ξ,Fk)/ǫλmax(S)‖η(0)‖
2

≤ e−γ(T∗−τ)/ǫλmax(S)L
2
∆η

‖η‖2 ,
(25)

where the last inequality follows from (36) in the proof of

Lemma 2 given in the Appendix and from the fact that due

to hybrid invariance ∆η(0, ξ) = 0 so that ‖∆η(η, ξ)‖
2 =

‖∆η(η, ξ) − ∆η(0, ξ)‖
2 ≤ L2

∆η
‖η‖2 for L∆η

> 0; see

Remark 1. Then, by (25) and the first inequality of (24),

the difference in the value of Vη between two consecutive

steps satisfies the estimate

Vη(P
ǫ
η (η, ζ, Fk))−Vη(η) ≤ (cη(ǫ)− λmin(S)) ‖η‖

2 , (26)

where cη(ǫ) := e−γ(T∗−τ)/ǫλmax(S)L
2
∆η

. By continuity of

cη in ǫ, and since limǫ→0+ cη(ǫ) = 0, there exists ǫ∗ > 0 so

that (cη(ǫ)− λmin(S)) < 0 for all ǫ ∈ (0, ǫ∗)
2) Construction of Vζ : We now turn our attention to Vζ in

(22). Motivated by the proof of Lemma 1, choose

Vζ(ζ) = (ζ − ζ∗)2 . (27)

We can bound Vζ by 0.5|ζ−ζ∗|2 ≤ Vζ(ζ) ≤ 2|ζ−ζ∗|2. The

change in the value of Vζ between successive steps is

Vζ(P
ǫ
ζ (η, ζ,Fk))− Vζ(ζ) =

[

Vζ(P
ǫ
ζ (η, ζ, Fk))− Vζ(ρ(ζ, wk))

]

+ [Vζ(ρ(ζ, wk))− Vζ(ζ)] .

(28)

The term in the second square bracket in (28) satisfies

Vζ(ρ(ζ, wk))− Vζ(ζ) ≤ −c1|ζ − ζ∗|2 + αζ(Fsup) (29)

from Remark 3. Regarding the first term in (28), defining

∆Vζ := Vζ(P
ǫ
ζ (η, ζ, Fk))− Vζ(ρ(ζ, wk)) and using (27)

∆Vζ = (P ǫ
ζ (η, ζ, Fk)− ζ∗)2 − (ρ(ζ, wk)− ζ∗)2

≤
(

|P ǫ
ζ (η, ζ, Fk)− ζ∗|+ |ρ(ζ, wk)− ζ∗|

)

|P ǫ
ζ (η, ζ, Fk)− ρ(ζ, wk)| , (30)

where the last inequality is obtained through the triangle
inequality. We have

|P ǫ
ζ (η, ζ, Fk)− ζ

∗|= |P ǫ
ζ (η, ζ, Fk)− ρ(ζ,wk) + ρ(ζ, wk)− ζ

∗|

≤ |P ǫ
ζ (η, ζ, Fk)− ρ(ζ,wk)|+ |ρ(ζ, wk)− ζ

∗|.



Substituting in (30) results in

∆Vζ ≤
(

|P ǫ
ζ (η, ζ, Fk)− ρ(ζ, wk)|+ 2|ρ(ζ, wk)− ζ∗|

)

|P ǫ
ζ (η, ζ, Fk)− ρ(ζ, wk)| .

(31)

Since ζ∗ = ρ(ζ∗, 0) = δ2zζ
∗ − v by (13), we have

|ρ(ζ, wk)− ζ∗| ≤ |δ2z (ζ − ζ∗)|+ |wk|

≤ δ2z |ζ − ζ∗|+ c3Fsup ,
(32)

where c3 is defined in Remark 3. Substituting (21) and (32)

in (31), ∆Vζ satisfies the following bound

∆Vζ ≤
(

λ‖η‖+ 2δ2z |ζ − ζ∗|+ 2c3Fsup

)

λ‖η‖

≤ 2λ2‖η‖2 + 2λδ2z‖η‖ · |ζ − ζ∗|+ c23F
2
sup ,

(33)

where 2λc3‖η‖Fsup was written into only-state and only-

force terms via 2ab ≤ a2 + b2. Adding (29) and (33) gives

Vζ(P
ǫ
ζ (η, ζ, Fk))− Vζ(ζ) ≤ c4‖η‖

2 + c5‖η‖ · |ζ − ζ∗|

−c1|ζ − ζ∗|2 + α4(Fsup), (34)

where c4 = 2λ2, c5 = 2λδ2z are positive constants and α4 is

a class-K function defined as α4(r) := αζ(r) + c23r
2, with

αζ(r) defined in Remark 3.

3) Construction of V : With Vη and Vζ defined by (23) and

(27), and using the estimates derived so far we now proceed

with showing that V defined in (22) is a LISS-Lyapunov

function for the system (12). First, note that

min {0.5, σλmin(S)}‖(η, ζ − ζ∗)‖2 ≤ V (η, ζ)

≤ (2 + σλmax(S)) ‖(η, ζ − ζ∗)‖2,

satisfying (16) in Definition 2. Then, let ∆V :=
V (P ǫ(η, ζ, Fk)) − V (η, ζ) and σ > 0 a constant to be

selected, and use the bounds (26) and (34), and (22) to get

∆V ≤ −c1|ζ − ζ∗|2 + c5‖η‖ · |ζ − ζ∗|

− (σ(λmin(S)− cη(ǫ))− c4) ‖η‖
2 + α4(Fsup)

= −
[

|ζ − ζ∗| ‖η‖
]

Λ(ǫ)

[

|ζ − ζ∗|

‖η‖

]

+ α4(Fsup) ,

where

Λ(ǫ) :=

[

c1 − 1
2c5

− 1
2c5 σ(λmin(S)− cη(ǫ))− c4

]

.

On checking the leading principal minors of Λ(ǫ) we observe

that c1 > 0 and for 0 < ǫ < ǫ∗ we can choose σ̄ as

σ̄ =
1

λmin(S)− cη(ǫ)

[

c25
4c1

+ c4

]

,

such that for all σ > σ̄, Λ(ǫ) is positive definite. Then,

∆V ≤ −λmin(Λ(ǫ))‖
[

|ζ − ζ∗| ‖η‖
]T

‖2 + α4(Fsup)

= −λmin(Λ(ǫ))‖(η, ζ − ζ∗)‖2 + α4(Fsup) .

Choose α1(r) = min {0.5, σλmin(S)} r
2, α2(r) =

(2 + σλmax(S)) r
2, α3(r) = λmin(Λ(ǫ))r

2, and α4(r) =
αζ(r)+c23r

2, thereby satisfying (16) and (17) in Definition 2.

Hence, V is a LISS-Lyapunov function and [11, Lemma 3.5]

implies that the system (12) is LISS.

V. SIMULATION RESULTS

To demonstrate the behavior of the biped under piecewise

constant and bounded forces, we present the evolution of

the LISS-Lyapunov function V constructed in Theorem 1

over a number of steps; see Fig. 2. Two different forcing

intensities are considered, and compared with the unforced

response of the system. In the results shown in Fig. 2,

the external force Fk applied over the k-th step acts in

the horizontal direction, and its magnitude is obtained by

sampling a uniform distribution so that ‖Fk‖ ≤ Fsup. Two

values of Fsup are shown in Fig. 2; namely, Fsup = 3N and

Fsup = 5N. In constructing the LISS-Lyapunov function (22)

we used σ = 10, ǫ = 0.1.

The unforced response of the system to perturbations away

from its nominal orbit is shown by red crosses in Fig. 2.

As expected, in the absence of the force, the Lyapunov

function converges to zero asymptotically and stays there.

In the presence of an external force with Fsup = 3N, the

evolution of the values of the Lyapunov function is shown by

grey triangles in Fig. 2. Initially, V decreases monotonically

until it crosses the dashed-dot black line in Fig. 2. While the

values of V remain below for all future steps, convergence

to zero is not realized due to the persistent external force.

Similarly when Fsup = 5N, the evolution of V shown by

blue circles in Fig. 2 remains trapped below the dashed line

in Fig. 2. Notice that the higher the value of Fsup is, the

higher the threshold of the value V is (in Fig. 2, 33 for

Fsup = 3N and 55 for Fsup = 5N). This is consistent with

the expected behavior of an input-to-state stable system.

Finally, note that for ǫ > 0.7, the system becomes

unstable, thus, affirming that the biped will keep taking steps

in the presence of the external force only for sufficiently fast

rates of convergence of the transversal dynamics as indicated

by Theorem 1. It is worth noting that for ǫ > 0.7, the

unforced response of the system was also unstable.

VI. CONCLUSION

This paper proves local input-to-state stability (LISS)

for a dynamically walking biped under persistent external

excitation in the form of a piecewise constant force which

can change in a step-by-step fashion. First, a HZD controller

is designed to generate locally exponentially stable unforced
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Fig. 2. Evolution of the LISS Lyapunov function V .



periodic gaits. Then, in a way analogous to [3], an ISS-

Lyapunov function is constructed locally around the nominal

orbit, establishing LISS for sufficiently fast convergence of

the dynamics transversal to the zero dynamics manifold.

Our motivation stems from a class of tasks that require the

physical cooperation between a walking bipedal robot and

an external agent (another robot or a human). In such tasks,

the bipedal robot has to adapt its walking motion to external

activity rather than trying to reject it. The results in this paper

provide a first step towards a framework within which such

tasks can be rigorously analyzed.

APPENDIX

Proof: [Lemma 2] As in the proof of [3, Lemma 1], let

µ1 ∈ R
dim(η) and µ2 ∈ R

dim(ξ), and define

TB(µ1, µ2, ξ, Fk) := inf {t ≥ 0 |

pvE(µ1, ϕξ(t,∆(0, ξ), Fk) + µ2) = 0} ,

where pvE is as in the definition (3) of S, and ϕξ is the

continuous-time flow of the forced system on Z based on

initial conditions ∆(0, ξ) ∈ Z . As in Remark 2, the implicit

function theorem implies the existence of open sets Bδ(0, ξ
∗)

and BF̄ (0) over which TB is well defined. Furthermore, by

[14, Theorem 1.1], TB is locally Lipschitz in µ1, µ2 and Fk.

Noting that TI(0, ξ, Fk) = TB(0, 0, ξ, Fk) we can write

|TB(µ1, µ2, ξ, Fk)−TI(0, ξ, Fk)| ≤ LB (‖µ1‖+ ‖µ2‖) .
(35)

Let ξǫ(t) and ξ(t) denote the evolution of ξ for ǫ > 0
and ǫ = 0, respectively. Setting µ1 = η(t)|t=T ǫ

I
(η,ξ,Fk)

and µ2 = ξǫ(t)|t=T ǫ
I
(η,ξ,Fk) − ξ(t)|t=T ǫ

I
(η,ξ,Fk) leads to

TB(µ1, µ2, ξ, Fk) = T ǫ
I (η, ξ, Fk) locally around the unforced

fixed point (0, ξ∗) and for ‖Fk‖ < F̄ ; see [3, Lemma 1].

By Remark 2, TI is continuous. Then, for τ > 0 there

exist δ > 0 and F̄ > 0 (shrink if necessary) so that for

(η, ξ) ∈ Bδ(0, ξ
∗) and Fk ∈ BF̄ (0) we have |T ǫ

I (η, ξ, Fk)−
T ǫ
I (0, ξ

∗, 0)| ≤ τ . Since T ǫ
I (0, ξ

∗, 0) = T ∗, where T ∗ is the

period of the unforced fixed point,

T ∗ − τ ≤ T ǫ
I (η, ξ, Fk) ≤ T ∗ + τ . (36)

As mentioned in Remark 1, ∆ is locally Lipschitz, so that

‖∆(η, ξ)−∆(0, ξ)‖ ≤ L∆‖η‖ (37)

for some L∆ > 0. On the other hand, by (9) we have

‖η(t)‖ ≤ βℓe
−

λℓ
ǫ
t‖η(0)‖ , (38)

and by using the Gronwall-Bellman inequality in view of the

fact that fξ and gξ are locally Lipschitz we obtain

‖ξǫ(t)− ξ(t)‖ ≤ ‖ξǫ(0)− ξ(0)‖eLt

+ ǫ
βℓL

λℓ + ǫL

(

eLt − e−
λℓ
ǫ
t
)

‖η(0)‖
(39)

in which λℓ, βℓ are positive constants, and L := Lf + LgF̄
where Lf > 0 and Lg > 0 are Lipschitz constants for fξ and

gξ; see Remark 1. Noting that 0 < e−
λℓ
ǫ
t ≤ 1, then using

(36) in (38) and (39) followed by (37) we can find bounds

‖µ1‖ ≤ L∆βℓ‖η‖ and ‖µ2‖ ≤ L∆ [1 + βℓ] e
L(T∗+τ)‖η‖ ,

which by (35) imply |T ǫ
I (η, ξ, Fk) − TI(0, ξ, Fk)| ≤

L∆LB

[

(1 + βℓ)e
L(T∗+τ) + βℓ

]

‖η‖. Letting λ1 =
maxT∗−τ≤t≤T∗+τ ‖fξ(0, ξ) + gξ(0, ξ)Fk‖, we have

‖P̃ ǫ
ξ (η, ξ, Fk)− P̃ξ(0, ξ, Fk)‖

≤
∥

∥

∥ξ
ǫ(0) − ξ(0)

+

∫ Tǫ
I (η,ξ,Fk)

0

(fξ(η(s), ξ
ǫ(s))− fξ(0, ξ(s)))ds

+

∫ Tǫ
I (η,ξ,Fk)

0

(gξ(η(s), ξ
ǫ(s))− gξ(0, ξ(s)))Fkds)

∥

∥

∥

+

∣

∣

∣

∣

∣

∫ TI(0,ξ,Fk)

Tǫ
I
(η,ξ,Fk)

‖fξ(0, ξ(s)) + gξ(0, ξ(s))Fk‖ds

∣

∣

∣

∣

∣

≤ ‖µ2‖+ λ1|T
ǫ
I (η, ξ, Fk)− TI(0, ξ, Fk)|

≤ λ‖η‖

where λ = L∆

[

(1 + λ1LB)(1 + βℓ)e
L(T∗+τ) + λ1LBβℓ

]

.

The proof follows by noticing that for (η, ξ) ∈ S and in the

neighborhood of the fixed point that we work, P̃ ǫ
ξ (η, ξ, Fk) =

[θ−(η) P ǫ
ζ (η, ζ, Fk)]

T so that |P ǫ
ζ (η, ζ, Fk) − ρ(ζ, wk)| ≤

‖P̃ ǫ
ξ (η, ξ, Fk)− P̃ξ(0, ξ, Fk)‖ ≤ λ‖η‖.
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