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Abstract7

The potential benefit of applying gravity balancing to orthotic, prosthetic and

other wearable devices is well recognized, but practical applications have been

elusive. Although existing methods provide exact gravity balance, they require

additional masses or auxiliary links, or all the springs used originate from the

ground, which makes the resulting device bulky and space-inefficient. This

work presents a new method that is more practical than existing methods to

provide approximate gravity balancing of mechanisms to reduce actuator loads.

Current balancing methods use zero-free-length springs or simulate them to

achieve balancing. Here, non-zero-free-length springs can be used directly. This

new method allows springs to be attached to the preceding parent link, which

makes the implementation of spring balancing practical. The method is appli-

cable to planar and spatial, open and closed kinematic chains. Applications

of this method to a lower-limb orthosis and a manually-operated sit-to-stand

wheelchair mechanism are presented. Results show considerable reduction in

actuator requirements with practical spring design and arrangements.
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1. Introduction10

To considerably reduce the actuator requirements, gravity balancing has11

been used in anthropomorphic robots and other linkages that have to work12

against gravity. As the need for gravity balancing is well recognized, there are13

many techniques available. Exact (or perfect) static balancing of links can be14

obtained by adding counterweights, but this leads to an overall increase in iner-15

tial mass which is undesirable, especially if the application is to wearable devices16

such as orthoses, prostheses and exoskeletons. Static balancing using springs17

is more suitable for such applications since springs provide greater flexibility in18

attachment points.19

Rahman et al.[1] present techniques for balancing a single link perfectly using20

zero-free-length springs and extend it to balancing an n-link open chain with21

the help of auxiliary links. Although the use of auxiliary links provides per-22

fect balancing, the additional links occupy a lot of space and increase the mass23

and bulkiness of the mechanism. In addition, these techniques assume zero-24

free-length springs, which further contributes to the complexity of the design.25

Similarly, Streit and Shin[2] use zero-free-length springs for spring balancing of26

closed loop linkages. Agrawal and Agrawal [3] provide an approximate static bal-27

ancing method using non-zero-free length springs but with the need for auxiliary28

links. Gopalswamy et al.[4] present an approximate static balancing technique29

for a parallelogram linkage using torsional springs. Carwardine[5] and Riele30

and Herder[6] present perfect balancing techniques using non-zero-free-length31

springs but their solutions have specific geometric configurations that may not32

be usable in every situation due to space and size limitations.33

This work was inspired by the recent method devised by Deepak and Anan-34

thasuresh [7] which provides for perfect gravity balancing using only springs35

and no auxiliary links. However, their method again requires zero-free-length36
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springs or the simulation thereof using non-zero-free-length springs. In addition,37

all the springs in their technique have one end pivoted to the ground. These38

conditions pose considerable problems in many situations like wearable devices39

where cosmetic appearance and available space are major constraints.40

There have been other techniques for approximate spring balancing and for41

determining optimal spring pivot locations. Segla[8] presents an optimization42

using genetic algorithm for a six-DOF robot mechanism with the gripper force43

as the objective function. Huang and Roth[9, 10] use the principle of virtual44

work for placement of springs at apt positions. Mahalingam and Sharan[11]45

present an optimization for optimal location of spring pivots and relevant spring46

characteristics to reduce the unbalanced moment. Idlani et al.[12] present a47

technique with specified potential energy at precision points. Brinkman and48

Herder[13] present a technique for optimal spring balanced mechanisms by a49

method they call field fitting in which the energy field of the gravity balancer50

is matched as closely as possible to the energy field required for a balanced51

system. Here, we propose an optimization-based approximate spring balancing52

technique that helps predict the relevant spring parameters and spring pivot53

locations as well. The technique is presented in a generic fashion, which would54

allow it to be implemented in a variety of mechanisms.55

This work is motivated by the need for practical implementation of balancing56

in mechanisms that have stringent space and mass constraints, like orthoses,57

prostheses and exoskeletons. Previous attempts at using gravity balancing for58

such devices have resulted in complex and bulky mechanisms[14, 15, 16]. Ciupitu59

et al.[17] propose some mechanisms in their work that have medical relevance,60

but all these mechanisms have springs attached to the ceiling, greatly hindering61

the mobility and increasing the space requirements.62

The method used in this work, apart from being space efficient, makes design63
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easier by eliminating the step that involves simulating zero-free-length springs64

with non-zero-free-length springs. Springs with non-zero-free-lengths can be65

directly used. The method is very general and can be applied to open and66

closed loop kinematic chains comprising planar or spatial mechanisms. We67

demonstrate the design of the springs for reducing actuation requirements for a68

lower-limb orthosis (open-loop) and a manually operated sit-to-stand wheelchair69

mechanism (closed-loop).70

To overcome the requirement of locating one pivot of each spring on the fixed71

link [7], we investigated using child-parent connections to balance a serial chain72

of links. We show in the following section that exact balancing is not possible73

with this configuration, even with zero-free-length springs.74

The paper is organized as follows: the next section proves that perfect spring75

balancing is not possible by child-parent spring connections for a two-link se-76

rial manipulator. Section 3 describes the problem formulation for approximate77

spring balancing of open-link planar chains, a four-bar linkage and open-link78

spatial chains. Section 4 presents examples - the method is applied to design79

gravity balancing of a two-link lower-limb orthosis, and to reduce the actuator80

requirement of a manually operated sit-to-stand wheelchair mechanism. Section81

5 presents conclusions of the present work. Section 6 presents the nomenclature82

used.83

2. Proof to show that perfect spring balancing is not possible by84

child-parent spring connections85

We take the simple case of a two-link open kinematic chain connected by86

revolute joints as shown in Figure 1. The notation used is as indicated in87

Section 6. Zero-free-length springs are assumed in this section, for the sake of88
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Figure 1: Two-link open kinematic chain

simplifying the proof. The total potential energy of the system is given by89

PE =m2gr2 sin(θ2 + α2) +m3g[r3 sin(θ3 + α3) + l2 sin θ2]

+
1

2
K1(‖S21 − S12‖2) +

1

2
K2(‖S23 − S32 − L2‖2).

(1)

Expanding and simplifying, we get90

PE =m2gr2 sin(θ2 + α2) +m3g[r3 sin(θ3 + α3) + l2 sin θ2]

+
1

2
K1[‖S12‖+ ‖S21‖2

− 2 ‖S12‖ ‖S21‖ cos(θ2 + β21 − β12)]

+
1

2
K2[‖S23‖+ l22 + ‖S32‖2

+ 2l2 ‖S32‖ cos(θ3 − θ2 + β32)

− 2l2 ‖S23‖ cosβ23

− 2 ‖S32‖ ‖S23‖ cos(θ3 − θ2 + β32 − β23)].

(2)
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The potential energy is only a function of θ2 and θ3 as all the other quantities91

are constants. If spring balancing has to be exact, then,92

∇(PE) =

 ∂(PE)

∂θ2
∂(PE)

∂θ3

 =

 0

0

 (3)

for all θ2 and θ3. This implies that93

∂(PE)

∂θ2
=m2gr2 cos(θ2 + α2) +m3gl2 cos θ2

+K1 ‖S12‖ ‖S21‖ sin(θ2 + β21 − β12)

+K2l2 ‖S32‖ sin(θ3 − θ2 + β32)

−K2 ‖S32‖ ‖S23‖ sin(θ3 − θ2 + β32 − β23) = 0,

(4)

and94

∂(PE)

∂θ3
=m3gr3 cos(θ3 + α3)

−K2l2 ‖S32‖ sin(θ3 − θ2 + β32)

+K2 ‖S32‖ ‖S23‖ sin(θ3 − θ2 + β32 − β23) = 0,

(5)

Solving these two equations for K1 and K2, we get,95

K1 =
−[m2gr2 cos(θ2 + α2) +m3gl2 cos θ2 +m3gr3 cos(θ3 + α3)]

‖S12‖ ‖S21‖ sin(θ2 + β21 − β12)
. (6)

96

K2 =
m3gr3 cos(θ3 + α3)

l2 ‖S32‖ sin(θ3 − θ2 + β32)− ‖S32‖ ‖S23‖ sin(θ3 − θ2 + β32 − β23)
. (7)

Let97

C1 =
cos(θ2 + α2)

sin(θ2 + β21 − β12)
, (8)

98

C2 =
cos θ2

sin(θ2 + β21 − β12)
, (9)

and99

C3 =
cos(θ3 + α3)

sin(θ2 + β21 − β12)
. (10)
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Assume the case in which θ2 is kept constant but θ3 is varied. Since C1 and C2100

depend only on θ2, they remain constant, but C3 varies; therefore, K1 varies101

as is evident in (6). Hence, K1 is not constant for all {θ2,θ3} in configuration102

space where θ2 and θ3 are independent of each other.103

The basis set of this configuration space is {θ2, θ3}. The basis can also be104

taken as {θ3 − θ2, θ3} since these two quantities are also linearly independent105

and the dimension of the configuration space remains the same. If we keep106

(θ3 − θ2) constant and vary only θ3, the denominator of (7) remains constant,107

but the numerator varies. Hence, K2 cannot remain constant over the entire108

workspace.109

This proves that exact gravity compensation with springs of invariant spring110

constants is impossible over an entire configuration space using serial child-111

parent connections. To the best of the authors’ knowledge, this proof has not112

been presented before in the literature.113

3. Methodology114

Perfect balancing implies that the potential energy of the system is made115

invariant over the configuration space. This result is shown easily by expressing116

the dynamics of a mechanism using the Lagrangian formulation [18, pp 135].117

Let q be the vector of the generalized coordinates of the mechanism and τ be118

the vector of all the generalized forces. Then, the dynamics can be expressed as119

d

dt

∂(KE)

∂q̇
− ∂(KE)

∂q
+
∂(PE)

∂q
= τ. (11)

For static balancing, KE = 0 in (11), reducing the expression of torque to120

τ = ∇(PE) where the gradient operator is with respect to the configuration121

variables.122

By using a spring for static balancing, the net potential energy of the system123

is made to remain constant, i.e. ∇(PE) = 0, for the entire configuration space.124
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The spring stores energy when gravitational potential energy reduces, and it125

releases energy when gravitational potential energy of the system increases. If126

perfect spring balancing is not possible, approximate spring balancing can be127

achieved by minimizing the variance of potential energy over the configuration128

space. This is the central theme of this work.129

3.1. General Formulation of the Optimization130

Let x be the vector representing the configuration space variables and y be131

all the design parameters that can be altered such as the spring free length,132

locations of attachment points of the spring, etc. Ki represents the spring133

constant of the spring connecting the ith +1 child link to its parent, the ith link.134

The fixed link is the first link. Then,135

PE = f(x,y,K1,K2, ...,Kn). (12)

For each set of A = (y,K1,K2, ...,Kn), the PE at every x in space is found.136

Note that A cannot include kinematic parameters like link lengths, position of137

center of mass etc. as that would imply altering the mechanism. The goal of138

this work is to find feasible spring design for a mechanism without altering the139

mechanism itself.140

Let the set of all the PE for a particular A be PEA. The optimization is set141

up as follows.142

Objective Function : variance(PEA)

Control Variable : A (13)

Compulsory Constraint : Ki ≥ 0 for all i = 1, ..., n

Variance stands for the statistical parameter defined as143

V ariance (σ2) =

∑i=n
i=1 (xi − x̄)2

n− 1
, (14)
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where x̄ is the average of n data points and xi is the ith data point. These n data144

points are nodes of a mesh placed on the configuration space. As is expected,145

with increasing n, the accuracy of the optimal solution increases, but so does the146

computational effort. An appropriate mesh density can be picked by manually147

tuning it. An initial coarse mesh is placed on the configuration space which is148

made finer till the optimal solutions starting from the same initial conditions149

for different mesh sizes converge.150

Apart from the compulsory constraint on Ki, other constraints based on the151

specific design case can be incorporated.152

3.2. Formulation of potential energy variance minimization for open link chains153

The method is applied to open-link kinematic chains starting with the classic154

case of balancing of a single link.155

3.2.1. Single link with zero-free-length springs156

The configuration for this case is similar to the single link balancing in [1]157

(see Figure 2).158

Using the notation developed in Section 6, the PE in terms of θ2 is expressed159

as160

PE = m2gr2 sin(θ2 + α2) +
1

2
K1(‖S21 − S12‖2). (15)

The parameter values, β12 = 90o, β21 = 0oand α2 = 0o chosen to match161

the configuration provided in [1]. m2 = 1kg, r2 = 0.25m, ‖S12‖ = 0.1m and162

‖S21‖ = 0.2m were chosen randomly.163

An optimization problem was formulated according to (13) with the PE given164

by (15) and K1 as the only control variable. The optimization was performed165

using MATLAB®’s optimization toolbox fmincon (gradient based). The result166

of the optimization gave167

K1 = 122.5012 N/m by PE variance minimization.

9
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Figure 2: Balancing a single link (adapted from [1])

According to [1], for perfect spring balancing,168

K1 =
m2gr2

‖S12‖ ‖S21‖
= 122.5 N/m.

Thus, the spring constant obtained by optimization closely matches with the169

exact solution for the single-link case.170

3.2.2. Single link with non-zero-free-length springs171

For this case, we introduce a non-zero-free-length spring with free length len172

in place of the zero-free-length-spring in Figure 2. Previous work [1] has shown173

that exact balancing is not possible with a non-zero-free-length spring connected174

in the manner shown in Figure 2. The potential energy can be expressed as175

PE = m2gr2 sin(θ2 + α2) +
1

2
K1(‖S21 − S12‖ − len)2. (16)

According to the general formulation in Section 3.1, x = θ2 ; A =

 len

K1

.176

Apart from the compulsory constraint on K1 (Section 3.1), another arbitrary177

constraint is introduced: len ≥ 0.05m, that is, the free length of the spring178

10



should be greater than or equal to 5 cm. Performing the optimization, we get179

A =

 0.05 m

161.39 N/m

 .
The spring balancing thus obtained is not exact, but reduces the torque re-180

quirement of the system considerably. Figure 3 shows the potential energy181

distribution over the configuration space for the unbalanced, perfectly balanced182

and approximately balanced link. Table 1 shows the peak actuator require-183

ments before and after approximate balancing. Figure 4 gives a comparison of184

the actuation torque values before and after balancing. Note that the torque185

requirement would be zero for perfect balancing.
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Figure 3: Potential Energy distribution over space(θ2) for a single link

186

Table 1: Peak actuator torque for single link with and without approximate balancing

Actuator Unbalanced peak
torque (Nm)

Balanced peak
torque (Nm)

Torque reduction

1 2.45 0.23 90.5%
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Figure 4: Actuator torque requirement for an unbalanced, perfectly-balanced and
approximately-balanced single link

3.2.3. Incorporating additional design parameters for optimization187

Throughout this work, for the sake of simplicity, only the spring constants188

and free length of the springs were used as control variables, with the other189

parameters kept constant. However, the method for approximate balancing190

described earlier is very flexible. For example, the position of the spring pivots,191

Sij can be included in the control variables so that,192

A =



‖Sij‖

βij

len

K


.

To illustrate, the example in Section 3.2.2 is extended to include more design193

parameters. The control variables now include the position of the spring pivot,194

and therefore, A =


‖S21‖

len1

K1

. In addition to the earlier contraints, a new195
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constraint is added to keep the pivot point of the spring on the link within some196

desired range, say,197

0.05 m ≤ ‖S21‖ ≤ 0.5 m.

Potential energy variance minimization yields198

A =


0.294 m

0.05 m

99.96 N/m

 .
The optimization using these values yields a peak torque for the actuator199

of 0.10 Nm which is lower than the earlier value of 0.23 Nm (see Figure 5 and200

Table 1). This is as expected since more parameters are included as control
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Figure 5: Torque plot with extra design variable for the case in Section 3.2.2

201

variables in the optimization problem. However, the optimization problem can202

become very complex when more control variables and constraints are involved.203

Normal gradient-based methods will lead to local convergence. Heuristic opti-204

mization methods may be more appropriate in this scenario for greater likelihood205

13



of global convergence.206

3.2.4. Generalized formulation for a planar n-link open kinematic chain207

The formulation of potential energy variance minimization can be extended208

to the case of an open kinematic chain with n links (excluding ground) con-209

nected by revolute joints. Figure 6 shows an open kinematic chain with n links.210

The general nomenclature as defined in Section 6 is followed. The basis of the211

configuration space has n elements {θ2, θ3, ......, θn+1} corresponding to the n212

degrees of freedom.

�

Y

�

��

��

��

��

Figure 6: An n-link (excluding ground) open kinematic chain

213

Each degree of freedom is controlled by an actuator. Let actuator (j) control214

θj+1. To reduce the actuator requirement for actuator j, the potential energy215

variance must be minimized for all the links ahead of it, that is, for links (j+ 1)216

to n. Define Li as the position vector from joint i−1 to i and let L1 be the zero217

vector. Then,the potential energy to be used for actuator j is represented by218

PEj =

i=n+1∑
i=j+1

[migr
z
i +

1

2
Ki−1(‖Si,i−1 − Si−1,i + Li−1‖ − leni−1)2], (17)

14



rz2 = r2 sin(θ2 + α2), (18)

rzi = ri sin(θi + αi) +

k=i−1∑
k=2

lk sin(θk + αk), ∀i > 2. (19)

Variance(PEj
Aj

) is minimized starting from the distal part of the linkage, that219

is, from actuator n. The optimization yields An. We then optimize for actuator220

(n − 1) using An to get An−1. The process is repeated until A1 is obtained.221

Following this sequential procedure breaks down a large nonlinear optimization222

problem into smaller ones which are more tractable. The intuition behind such223

a procedure lies in the fact that for serial chain manipulators, an actuator only224

perceives the load applied further down the chain, thus, springs, links or loads225

further up the chain would not affect the required torque of the succeeding226

actuators.227

3.3. Formulation of potential energy variance minimization for a planar fourbar228

linkage229

The most common example of a closed-loop kinematic chain is a four-bar230

linkage. In this section, the method of PE variance minimization is applied to a231

four-bar linkage, which has four links including the ground. The nomenclature232

used is the same as that for an n-link open chain. Here, the number of links233

excluding ground is 3. This optimization technique will work for any number234

of springs connected between any two bodies. For the sake of simplicity, two235

springs are considered - one each between the non-floating links and the ground,236

as shown in Figure 7.237

Since a fourbar is a one-degree-of-freedom (DOF) mechanism, the basis set238

has only one element. Let it be {θ2}. Position analysis of the fourbar is per-239

formed first to express θ3 and θ4 in terms of θ2. The PE of the system is given240
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Figure 7: Balancing a general four-bar linkage

by241

PE = m2gr2 sin(θ2 + α2) +m3g(l2 sin θ2 + r3 sin(θ3 + α3))

+m4g(l1 sin θ1 + r4 sin(θ4 + α4)) +
1

2
K1(‖S12 − S21‖ − len1)2

+
1

2
K2(‖S14 − S41‖ − len2)2. (20)

Potential energy variance minimization is set up as outlined in Section 3.1. In242

the 1-DOF fourbar with θ2 as input, K1 and K2 can be found simultaneously243

as only θ2 is controlled by an actuator.244

3.4. Formulation of potential energy variance minimization for an open chain245

spatial linkage246

The spring balancing technique proposed in this work has been applied to247

the balancing of spatial open chain mechanisms as well. The formulation of the248

optimization problem remains similar to that for planar mechanisms. Denavit-249

Hartenberg (D-H) parameters are used to compute the kinematics of a general-250

ized serial n-link spatial mechanism (see figure 8). Coordinate systems o0 and251

o1 are both fixed and do not move. Z1 is aligned according to the axis of the252

rotary actuator 1, which may not be in the vertical direction always. The height253
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of the centre of mass of each link is required to calculate the potential energy,254

hence, the coordinate system 0 with a vertical Z0 axis is introduced to take care255

of it. As before, the total potential energy of the links for the entire workspace

𝜃3 

𝑍0 

𝑋0 

𝑋2 𝑍1 

𝑍2 
𝑍3 

𝑍𝑛 

𝑋3 

𝛼2 

𝛼3 

𝐿𝑖𝑛𝑘 1 (𝐺𝑟𝑜𝑢𝑛𝑑 𝐿𝑖𝑛𝑘) 

𝐿𝑖𝑛𝑘 3 
𝛼1 

𝜃2 

𝑜1, 𝑜0 
𝑜3 

Figure 8: D-H parameter convention(adapted from [19])

256

is written and the variance minimized to obtain the spring parameters.257

In this section any vector V is written in the homogeneous form, i.e.,258

V =



x

y

z

1


. (21)

From [19], the transformation matrix from ith coordinate system to (i − 1)th259
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∀i ≥ 2 is given by260

T i−1
i =



cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ai cos(θi)

sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ai sin(θi)

0 sin(αi) cos(αi) di

0 0 0 1


. (22)

Here, angle αi is the angle between the axis Zi and Zi−1 measured in a plane261

normal to xi. ai is the shortest distance between the axes Zi and Zi−1. d is262

the perpendicular distance from the the origin oi−1 to the intersection of Xi263

with Zi−1 measured along Zi−1 and finally θi is the angle between Xi−1 and Xi264

measured in a plane normal to Zi−1. Figure 8 represents these symbols on an265

open chain n-link spatial mechanism.266

0th coordinate system is the fixed frame of reference, whereas all others are267

moving coordinate systems. Note that the 0th coordinate system is not a part268

of the D-H chain. So the X1, Y1 axes orientation for frame 1 can be picked269

anywhere in the X1−Y1 plane after placing Z1 along the pivot axis, as it is the270

first frame in the D-H chain.271

T 0
1 =



cos(αi) 0 sin(αi) 0

0 1 0 0

− sin(αi) 0 cos(αi) 0

0 0 0 1


, (23)

aligns the Z1 axis with the Z0 axes. Overlapping the other two axes is not272

important as for potential energy, only the z component is pertinent. The273

potential energy of the jth link can be written as274

PEj =

i=n+1∑
i=j+1

[
migr

z
i +

1

2
Ki−1(

∥∥T i−1
i Si,i−1 − Si−1,i

∥∥− leni−1)2
]
. (24)

In the planar case Si,j and Ri were expressed in the ground frame but in spatial275
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it is expressed in the ith frame. rzi can be obtained by converting the relative276

centre of mass of the link with respect to the frame Z0277

R0
i = T 0

i R
i
i, (25)

where278

T 0
i = T 0

1 T
1
2 T

2
3 ......T

i−1
i . (26)

The z-component of the position of centre of mass is in the 3rd row of the column279

vector R0
i ,280

rzi = R0
i (3, 1). (27)

Variance(PEj
Aj

) is minimized starting from the distal part of the linkage, that281

is, from actuator n. The optimization yields An. We then optimize for actuator282

(n− 1) using An to get An−1. The process is repeated until A1 is obtained.283

3.4.1. Spatial single-link balancing284

Consider a single link pivoted with its pivot axis making an angle α1 with285

the vertical axis. The relevant parameters of the link were taken as:286

m2 = 2kg, a2 = 0.3m, d2 = 0m, α1 = 30o, α2 = 0o287

R2 =



−0.1m

0

0

1


, S12 =



0

0

0.05m

1


, S21 =



−0.2m

0

0

1


288

Here S21 and R2 are written with respect to the moving coordinate system 2289

on the link (refer Figure 8).290

Potential energy variance minimization was performed with these parame-291

ters. Figure 9 shows the potential energy distribution at α1 = 30o. The K292

obtained was 784 N/m. An interesting result to note here is that when varying293

α1 alone while keeping the other parameters constant, the spring constant ob-294

tained is constant for perfect balancing, except for the case of α1 = 0. For α1 = 0295
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Figure 9: Potential Energy distribution for spatial single link balancing with a zero free length
spring

the link rotates in a horizontal plane, hence, physically there is no meaning for296

spring balancing against gravity in that case. The fact of the spring constant297

remaining the same for all other α1 can be exploited to reduce the computa-298

tions required for balancing a link with a non-zero-free-length spring connected299

to the ground by a ball and socket joint. The number of computations decrease300

drastically as we can reduce the case of a ball and socket joint to a simple single301

link pivoted to the ground.302

This was followed by balancing of the same single spatial link with a spring303

of non-zero-free-length. In this case α1 was taken as 45◦. The free length of the304

spring was constrained to lie between 0.075m and 0.15m. For this optimization,305

we used306

A = [K len]T (28)

The minima obtained was307

Amin = [2483 N/m 0.075m]T (29)
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The peak torque on doing so reduced from 2.77 Nm to 1.17 Nm, i.e. a peak308

torque reduction of 57.7 %. See Figure 10 for comparison of torque distribution309

over the entire workspace of the link in balanced and unbalanced state.
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Figure 10: Torque comparison between an unbalanced and balanced spatial link

310

3.4.2. Spatial two-link balancing311

Using potential energy variance minimization, a spatial two link 2-DOF ma-312

nipulator was balanced. The relevant mechanism parameters arbitrarily chosen313

were314

m2 = 2 kg, m3 = 2 kg,315

0.07m ≤ len1 ≤ 0.08m, 0.07m ≤ len2 ≤ 0.08m316

α1 = 90◦, α2 = 20◦, α3 = 45◦317

R2 =


−0.1 m

0

0

, R3 =


−0.1m

0

0

318
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S12 =


0

0

0.05m

, S21 =


−0.2m

0

0

, S23 =


−0.1m

0

0

, S32 =


−0.2m

0

0

319

The minima were obtained at320

A2 = [715 N/m 0.07m]T , (30)

321

A1 = [7464 N/m 0.08m]T . (31)

Table 2 compares the peak torque values for the two links before and after322

balancing with the designed springs and Figure 11 shows the torque distribution323

of each link over the configuration space.324

The small reduction in peak torque for actuator 2 happens as the link ap-325

proaches a point of singularity in the workspace. At a singularity the force326

applied by the spring is unable to generate any torque about the actuator ren-327

dering the spring useless resulting in the value of torque to be the same as that328

of an unbalanced case at the singularity. The effectiveness of spring balancing329

therefore depends on the workspace of the mechanism as well.330

Table 2: Two link spatial manipulator results

Actuator Unbalanced Balanced Torque reduction

torque (Nm) torque (Nm) Optimization

Actuator 1 (proximal) 13.72 3.48 74.6%
Actuator 2 (distal) 3.92 3.59 8.4%

4. Design examples using approximate spring balancing331

In this section, the PE variance minimization method is used to design for332

gravity balancing of a lower-limb orthosis (example of an open kinematic chain)333

and a manually-operated sit-to-stand wheelchair mechanism (closed kinematic334

chain). In both cases, the human acts as the actuator.335
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Figure 11: Comparison of unbalanced and balanced torque distribution for actuator 1 (top)
and actuator 2 (bottom) over the entire workspace
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4.1. Approximate balancing of a two-link lower-limb orthosis336

A lower-limb orthosis is a supportive device to enable users with weakened337

leg muscles (due to various pathologies such as post-polio, spinal cord injury,338

cerebral palsy, etc.) to walk. Gravity balancing is of tremendous importance339

for this application since users typically have limited muscular capabilities and340

the device adds additional weight. [3] present a design for a lower-limb orthosis341

using static balancing with springs and auxiliary links. We redesign the orthosis342

with the new method in this section. The movable (with respect to a stationary343

pelvis) links considered are the femoral and tibial links, so n = 2. The relevant344

values for the various parameters were taken from [3]. The parameters used are:345

r2 = 0.177 m, r3 = 0.185 m, l2 = 0.432 m,346

α2 = 0◦,α3 = 0◦, β21 = 0◦, β12 = 90◦, β23 = 0◦, β32 = 0◦,347

m2 = 7.39 kg, m3 = 4.08 kg, g = 9.8 m/s2,348

240◦ ≤ θ2 ≤ 300◦, and (θ2 − 60◦) ≤ θ3 ≤ θ2349

The range of motion of the links corresponds to normal human walking. The350

attachment points of the springs were also selected as a part of the control351

variables for optimal placement of the springs. The constraints placed on this352

optimization were:353

1. Maximum length of the spring should be less than 1.5 times its free length354

to make sure that the spring is within its feasible range of operation.355

2. Minimum length of the spring should be greater than the free length of356

the spring to ensure that a tension spring is obtained.357

3. Spring constant should be greater than 0 and less than 10000 N/m.358
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The potential energy variance(PE2
A2) is minimized subject to the constraints359

specified above to obtain A2:360

A2 =



K2

len2

‖S23‖

‖S32‖


=



1128 N/m

0.18 m

0.26 m

0.1 m


Using A2, the PE variance(PE1

A1) is minimized subject to the constraints to361

obtain A1 as:362

A1 =



K1

len1

‖S12‖

‖S21‖


=



2000 N/m

0.31 m

0.19 m

0.26 m


Gradient-based methods (Active Set, SQP(Sequential Quadratic Programming))363

failed to give a global convergence; hence a genetic algorithm was used for this364

optimization using the MATLAB® optimization toolbox ga.365

Table 3 shows the torques obtained using minimization of the PE variance366

and compares the reduction to the values reported in [3]. The torque reduction367

by the proposed method is lower than the torque reduction by the method368

used in [3], but the PE variance minimization technique eliminates the need369

for auxiliary links making the entire mechanism compact and more practical.370

More parameters such as β’s of the spring pivot positions can also be varied.371

See Figures 12 and 13 for torque variation with (θ2, θ3) before and after spring372

Table 3: Comparison of results

Actuator Unbalanced Balanced Torque reduction

torque (Nm) torque (Nm) Optimization From [3]

1 (Hip Joint) 22.24 6.44 71.0% 90%
2 (Knee Joint) 7.41 3.70 50.0% 50%
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balancing. Actual springs were designed for spring 1 and 2 using [20]. The

𝑼𝒏𝒃𝒂𝒍𝒂𝒏𝒄𝒆𝒅 

B𝒂𝒍𝒂𝒏𝒄𝒆𝒅 

Figure 12: Torque for actuator 2 (knee joint) before and after spring balancing

373

extension springs so obtained are made of music wire, a commonly used material374

for springs, and are neither too bulky nor too heavy. Table 4 presents the375

parameters of the spring design for the two springs used in the orthosis. A

Table 4: Spring design for lower-limb orthosis

Spring Spring
constant
(N/m)

Wire
diameter
(mm)

Coil
diameter
(mm)

Number
of turns

Mass (kg)

1 2000 4 26 76 0.600

2 1128 3 23 60 0.238

376

schematic of the lower body orthosis was modeled (Figure 14) to visualize the377

practical space requirement of the designed springs. Note that the direct use378

of zero-free-length-springs and the absence of auxiliary links and systems to379

simulate non-zero-free-length springs make this design less complex and more380

cost-effective.381
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𝑼𝒏𝒃𝒂𝒍𝒂𝒏𝒄𝒆𝒅 

B𝒂𝒍𝒂𝒏𝒄𝒆𝒅 

Figure 13: Torque for actuator 1 (hip joint) before and after spring balancing

4.2. Example: Balancing of a sit-to-stand wheelchair382

Reducing actuator loads is also important for applications in which human383

effort is required for actuation. A manually-powered sit-to-stand wheelchair384

developed in the Rehabilitation Research and Device Development (R2D2) Lab385

in IIT Madras uses a four-bar mechanism actuated by the user through a driver386

dyad [21]. Actuator torque minimization is critical since the user has to lift387

himself/herself from the sitting to the standing position using his/her upper388

body strength. Balancing by the potential energy variance minimization method389

for a four-bar linkage was applied to this design problem. The mechanism390

accomplishing the sit-to-stand motion of the wheelchair is a paralleogram linkage391

(a-b-c-d) as shown in Figure 15. Note that this parallelogram is not an auxiliary392

linkage added for balancing. An extension spring was designed to be connected393

between a-c to utilize the unused space below the seat. The PE for the four-bar394
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Figure 14: A schematic of the orthosis with the designed springs, modeled to scale

parallelogram linkage is given by395

PE = m2gr2 sin(θ2 + α2) +m3g(l2 sin θ2 + r3 sin(θ3 + α3)) (32)

+m4g(l1 sin θ1 + r4 sin(θ4 + α4)) +
1

2
K1(‖S13 − S31 − L2‖ − len1)2

The configuration space for this application is 0◦ ≤ θ2 ≤ 85◦. The sit-to-stand396

device is designed for a person weighing 100 kg. The relevant parameters for397

the design are taken from [21]:398

m2 = 103 kg, m3 = 1.5 kg, m4 = 3 kg399

l1 = 200 mm, l2 = 440 mm, l3 = 200 mm, l4 = 440 mm400

r2 = 220 mm, r3 = 100 mm, r4 = 220 mm,401

g = 9.8 m/s2, θ1 = 315◦.402

The control variables are A =

 len1

K1

. Apart from the compulsory con-403

straint on K1 to ensure that the spring is always in tension, the free length404

must be less than the minimum length of the spring during operation. len1 ≤405

min(‖S13 − S31‖) = 0.3642 m and len1 ≥ 0.1 m.406

28



(a) (b) 

2 

3 

4 

𝑎 

𝑏 𝑐 

𝑑 2 

3 

4 

𝑎 

𝑏 

𝑐 

𝑑 

𝑒 

𝑒 

6 

5 

5 

6 

(c) (d) 

Figure 15: Mechanism of sit-to-stand wheelchair(adapted from [21]).(a) CAD model - sitting
position, (b) CAD model - standing position, (c) Kinematic diagram - sitting position, (d)
Kinematic diagram - standing position
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Minimizing variance(PEA) subject to the specified constraints results in407

A =

 0.364 m

6902 N/m

 .
Since the parallelogram is actuated by a dyad and the user’s center of gravity408

varies as the wheelchair moves from the sitting to the standing position, the force409

analysis was done using ADAMS®. Figure 16 shows the torque requirement410

without and with balancing. This is the torque the user has to apply at joint e411

to lift himself/herself from sitting to the standing position (see Figure 15).412
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Figure 16: Comparison of wheelchair actuation torque before balancing and after balancing

The torque required to actuate the linkage before and after spring balancing413

are compared in Table 5. The results obtained after optimization were used to

Table 5: Comparison of results for wheelchair before and after balancing

Torque before balancing
(Nm)

Torque after balancing
(Nm)

Torque reduction

160 23 85.62%

414

design a spring using [20]. There are two mechanisms, one on either side of the415
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wheelchair and hence two springs are required. Therefore, the spring constant416

for the spring design is taken as half of the value obtained by optimization.417

The material used is music wire and the parameters of the spring designed are418

specified in Table 6.

Table 6: Spring design for sit-to-stand wheelchair

Spring Constant Wire Diameter Coil Diameter No. of Turns Mass

3451 N/m 6 mm 40 mm 61.5 1.65 kg

419

5. Conclusions420

This paper presents a new method for static balancing of mechanisms with421

conservative loads such as gravity and spring loads using non-zero-free-length422

springs with child-parent connections and no auxiliary links. The method, which423

involves minimizing the variance of the potential energy, provides substantial re-424

duction in actuator requirements under space constraints. Although the method425

provides only for approximate balancing, it is versatile, flexible and easy to im-426

plement. The true potential of this technique lies in the fact that it uses a very427

simple optimization to find the spring constant, free-length of the spring and also428

the optimal attachment points subject to the optimization constraints. Its sim-429

plicity and effectiveness would make it a handy tool for designers. The method430

uses physically realizable non-zero-free-length springs directly, thereby reducing431

the complexity involved in simulating zero-free-length springs from non-zero-432

free-length springs. In addition, because auxiliary linkages can be avoided, the433

resultant mechanisms can be more compact. The cost benefits and reduced434

complexity can be significant advantages especially in the development of user-435

actuated rehabilitation devices for developing countries.436

Although parallel manipulators have not been dealt with in this paper, the437

authors believe that this approach of flattening the potential energy distribution438
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over the workspace can be extended to this class of mechanisms as well. Unlike439

serial manipulators, a sequential optimization may not be possible for parallel440

manipulators having higher degrees of freedom as the external loads are shared441

by all actuators. This could potentially complicate the optimization problem.442

This method has certain drawbacks as well. The optimal solution for the443

spring design obtained is dependent on the target workspace of the mecha-444

nism as different workspaces have different potential energy distributions. If445

the workspace contain singularities, i.e. orientations where the spring is unable446

to generate any torque about the joints, then spring balancing will have no447

torque reduction for those orientations. Such points should be avoided. Future448

work will look into avoiding singularities by appropriate placement of springs.449

Also, as the size of the mechanism and the number of springs in it grow, the450

time taken for the optimization to converge to a solution increases.451

The method based on potential energy is easier to formulate than methods452

that minimize torque obtained by Eulerian equations. The method provides453

flexibility in choosing appropriate control variables that are relevant to a par-454

ticular design problem. However, as with all optimization problems, convergence455

may be local and may not give the best solution, especially when several control456

variables are involved.457

This paper presents the formulation for planar and spatial open kinematic458

chains, for a planar four-bar linkage, and illustrates application to a lower-limb459

orthosis and a sit-to-stand wheelchair. Design of a prototype of the orthosis460

and incorporation of spring balancing in the wheelchair prototype are currently461

in progress. The method of approximate spring balancing using minimization462

of the potential energy variance can be extended to balancing using torsional463

springs, and can find wide application in the area of robotics, as well.464
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6. Nomenclature465

Sij - The position vector of the attachment point of spring connecting body466

i and body j on body i, measured from the parent pivot of body i.467

Ri - The position vector of the centre of mass of the ith link from the parent468

pivot of the ith body.469

Li - The position vector from joint i− 1 to joint i for all i > 2470

ri - ‖Ri‖471

li - Kinematic length of the ith link472

βij - Angle of Sij with respect to the kinematic line of the ith link measured473

counterclockwise (β12 is the only exception measured from horizontal)474

αi - Angle of Ri with respect to the kinematic line of the ith link measured475

counterclockwise476

θi - Angle of the kinematic line of the ith link measured counterclockwise477

from horizontal (Assumed 0 for ground)478

mi - Mass of the ith link479

Ki - Spring constant of the spring connecting body i and i+1480

leni - Free length of the spring connecting body i and i+1481

g - acceleration due to gravity (9.8 m/s2)482

PE - Total Potential Energy483
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