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Abstract— This paper presents a control method for steering
three dimensional (3D) dynamically walking bipeds that are
engaged in cooperative tasks such as object transportation.
Towards achieving safe interaction with a leading human (or
robot) collaborator, the walking biped is required to exhibit
compliance at the port of interaction, while simultaneously
adapting its walking pattern in response to the perceived
interaction forces. To address these issues, we propose a method
that fuses impedance control of the biped’s arm with position
control of its legs in a way that the biped adaptively modifies its
stepping pattern according to the collaborator’s intentions. The
method is applied on a 3D bipedal robot that is driven in the
workspace by a collaborator, whose intention is communicated
to the biped through the interaction force.

I. INTRODUCTION

There is an increasing demand for assistive bipedal robots
that are capable of physical interaction with other agents –
possibly humans – to accomplish collaborative tasks, such
as coordinated object transportation. In such collaborative
scenarios, we can rely on the environment mapping and
path planning skills of the leading collaborator to choose an
obstacle-free trajectory for the team. This intended trajectory
may not be directly accessible by the robot; however, the
interaction forces developed between the robot and the
collaborator offer cues on how the robot should adapt its
behavior to accomplish the task. The objective of this paper
is to provide a method for gait adaptation of a three-
dimensional (3D) limit-cycle biped that allows a collaborator
to effectively “walk” the biped along a desired path.

There has been substantial research on cooperative tasks
with legged robots; these efforts focus primarily on hu-
manoids walking under the Zero Moment Point (ZMP)
criterion of stability. For instance, [1] presents an interaction
interface that enables a human to drive the humanoid NAO
by applying a force on its hand. The method is based on
adjusting heading angle, step length and frequency according
to the interaction forces that convey the human’s intention.
A comprehensive compilation of examples where humanoid
robots accomplish manipulation tasks that require locomo-
tion adaptation can be found in the book [2]. However, such
tasks have not been explored in dynamically1 walking bipeds.
Indeed, the vast majority of the literature on dynamic bipeds
focuses on the realization of stable and robust limit-cycle
walking gaits. Relevant methods include, for example, geo-
metric reduction [3], hunting for virtual constraints [4], and
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hybrid zero dynamics (HZD) [5], [6]. Systematic approaches
have also been developed to enhance the robustness of the
resulting gaits to modeling uncertainties [7], and to rough
terrain [8], [9].

With the intention to engage limit-cycle walkers in tasks
that involve their arms, dynamic locomotion controllers have
been extended to incorporate manipulation in fully actuated
bipeds [10]. In this case, the control system is designed so
that the walking gait remains unaffected by the manipula-
tion task, which is effectively planned in the nullspace of
the locomotion controller. However, for cooperative tasks
– such as coordinated object transportation – interaction
forces developed between the robot’s arms and the external
collaborator may carry important information about the task;
thus, these forces may act as command signals that the biped
needs to adapt to. Along these lines, the authors’ previous
work [11]–[13] explored the use of interaction forces for
adaption of the biped’s speed in planar settings. The purpose
of this paper is to extend gait adaptation to 3D limit-cycle
walkers, which can adjust not only their speed but also their
direction in response to interaction forces.

Dynamic bipedal walking in 3D environments cluttered by
obstacles has been explored in a few studies. For example,
an event-based controller within the HZD framework was
developed in [14] to steer a 3D biped along a desired
path with mild curvature. A motion planning framework
that composes limit-cycle gait primitives to navigate a 3D
dynamic biped amidst obstacles was proposed in [15], [16].
Analytical guarantees for stable execution of such motion
plans were offered in [16], while [17] further extended these
methods to obtain plans that can be executed with virtually
zero drift. All these efforts require the biped to follow a
suggested path in the absence of interaction forces.

By way of contrast, this paper proposes a method for
navigating limit-cycle walkers in 3D environments by ac-
tively modifying their speed and heading angle in response
to interaction forces. Our approach is particularly suitable
for leader-follower cooperative tasks, in which the biped’s
manipulator interacts with a leading collaborator in a way
that its motion is guided by the collaborator’s intentions. This
way, the biped can leverage the leader’s knowledge regarding
the environment and the task. The proposed method relies
on integrating impedance control to regulate interaction,
with HZD control to synchronize the actuated degrees of
freedom (DOF) so that the generated walking gaits can be
adapted to external activity. The feasibility of the method is
illustrated on a 3D biped that tracks the intended trajectory of
a leader in an environment with obstacles without any explicit
knowledge of the leader’s intentions or the environment.



II. WALKING UNDER INTERACTION FORCES

We consider a fairly generic model of a 3D bipedal walker
as shown in Fig. 1. The model is composed of a torso and
two identical legs, each connected to the torso via a two-DOF
revolute hip joint. The legs are composed of two links – the
thigh and the shin – which are connected through a one-DOF
revolute knee joint. The biped is equipped with a two-link
manipulator that is attached to the torso through a two-DOF
revolute shoulder joint. The manipulator enables the biped to
interact with its environment via external forces exerted at
its end effector as in Fig. 1. We assume that the stance foot
acts as a pivot with three rotational DOFs corresponding to
the yaw q1, pitch q2, and roll q3 angles; see Fig. 1. During
the single support phase, the model has twelve degrees of
freedom q := (q1, ..., q12) ∈ Q, where Q contains physically
reasonable configurations of the system. Seven actuators –
four located at the hip joints, two at the knee joints and one
at the roll joint of the foot – provide the input torques for the
locomotion system, and three actuators – two at the shoulder
joint and one at the elbow joint – provide the input torques
for the manipulation system.
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Fig. 1. Robot model with a choice of generalized coordinates and
impedance model of interaction.

A. Cooperation Model

Consider a scenario in which the biped-leader team coop-
eratively transports an object over a distance that requires the
locomotion system of the biped to be engaged. The leader’s
role is to plan an obstacle-free path and guide the biped
to follow it by applying a suitable force at the biped’s end
effector. We assume that the intention of the leading co-
worker is encoded in a sufficiently smooth trajectory pL(t),
which is unknown to the biped. Rather, the biped “perceives”
the leader’s intentions through an interaction force Fe(t)
applied at its end effector. Let

yL = hL(t) := pL(t)− pE(q(t)) . (1)

be the tracking error between the end effector location pE(q)
and the intended location of the leader pL(t). As in [18], an

impedance model is implemented to translate the leader’s
intended trajectory to an interaction force2; i.e.,

Fe = KLyL +NLẏL , (2)

where KL and NL are the corresponding stiffness and
damping matrices; see Fig. 1. Note that (2) incorporates the
leader’s response to the robot’s activity; if the biped follows
the intention of leader closely, the leader applies a smaller
force on biped’s end effector.

B. Walking Model

Due to the nontrivial length of the hip joint, the equations
of motion during the left and right leg support phases are
different. In what follows, we develop a model for the left
leg support phase; the equations for the right leg can be
derived in a similar manner. The dynamics of the biped in
the swing phase can be written as

D(q)q̈+C(q, q̇)q̇+G(q) = B`u`+Bmum +JT
E (q)Fe, (3)

where D(q) is the mass matrix, C(q, q̇)q̇ contains the cen-
trifugal and Coriolis forces and G(q) contains the grav-
itational forces. The matrices B` and Bm distribute the
locomotion inputs u` and manipulation inputs um to the
configuration variables q. Finally, JE(q) := ∂pE(q)/∂q,
where pE is the position of biped’s end-effector, at which
the interaction force Fe is applied; see Fig. 1. Defining the
state vector x := (qT, q̇T)T, the swing phase dynamics (3)
can be written in state-space form

ẋ := f(x) + g`(x)u` + gm(x)um + ge(x)Fe , (4)

where x ∈ TQ :=
{

(q, q̇) | q ∈ Q, q̇ ∈ R12
}

and the vector
fields f , g`, gm, ge are defined accordingly.

Single support proceeds until the swing toe impacts the
ground in front of the stance leg; i.e., when the solution of
(4) intersects the surface

S := {(q, q̇) ∈ TQ | pv(q) = 0, ṗv(q, q̇) < 0} , (5)

where pv denotes the height of the swing leg.
When the swing toe contacts the ground, double support

is initiated. As in [5, Section 3.4.2], we assume that double
support is instantaneous and that no rebound or slip occurs
at the impact. The double support phase can be described
by a map ∆ : S → TQ taking the pre-impact state x− ∈ S
to the post-impact state x+ ∈ TQ that provides an initial
condition for the subsequent swing phase; i.e.

x+ = ∆(x−) . (6)

The derivation of ∆ is skipped here for brevity. The reader
can find the details in [6].

Combining the swing and impact phases, the model can
be expressed in the form of a system with impulse effects as

Σ:

{
ẋ =f(x)+g`(x)u`+gm(x)um+ge(x)Fe, x

− /∈ S,
x+ = ∆(x−), x− ∈ S,

where the symbols have the meaning explained above.

2In experimental implementation, the force Fe(t) should be known via a
force sensor.



III. COUPLED LOCOMOTION AND ARM CONTROL

This section develops a control law that regulates the arm’s
impedance in response to the external force, while generating
walking gaits through an HZD-based controller.

A. Virtual Constraints for the Locomotion Task
Walking is realized by assigning output functions in the

form of virtual holonomic constraints to the actuated joints
of the legs with the control objective being to drive these
outputs to zero. Consider the output function

ŷ` = ĥ`(q) := qa − hdes
` (θ(q)) , (7)

where qa := (q3, . . . , q9) includes the controlled variables
of the legs and hdes

` denotes the desired evolution of these
variables as a function of the quantity θ(q) = −q2 − q4/2,
which corresponds to the angle of the line connecting the
foot of the support leg with the corresponding hip joint. The
function hdes

` is designed using Beziér polynomials of degree
equal to three as detailed in [11].

In general, there is no guarantee that the output (7) remains
zero under the effect of the impact map ∆ of (6). To achieve
this we follow a technique detailed in [6], according to which
(7) is augmented with a correction term hc(θ, β) as

y` = h`(q, β) := qa − hdes
` (θ)− hc(θ, β) . (8)

The correction output hc is chosen to be a three times
continuously differentiable piecewise polynomial function of
θ. The vector of coefficients β is updated on a step-to-step
basis so that the initial error with respect to the (uncorrected)
output (7) is smoothly rejected by the middle of the step; see
[6] for more details.

B. Impedance Regulation for the Manipulation Task
The manipulation task is encoded in a set of suitably

designed output functions, the purpose of which is to regulate
the configuration of the arm. Consider

ym = hm(q) := pE(qm)− hdes
m (θ(q)) , (9)

where pE is the position of the end effector with respect to
a local frame attached to the shoulder, qm := (q10, q11, q12)
contains the configuration variables of the arm. The desired
evolution hdes

m (θ(q)) is a vector of degree three Beziér poly-
nomials that describes the desired position of end effector
relative to the shoulder joint; equivalently, hdes

m (θ(q)) can
be viewed as the desired configuration of the arm. The
goal of the impedance controller is to enforce a mechanical
impedance relation that governs the evolution of the output
(9) in response to the interaction force Fe; that is,

Mmÿm +
Nm

εm
ẏm +

Km

εm2
ym = Fe , (10)

where εm > 0 is a parameter, and Mm, Nm, and Km

are positive definite mass, damping and stiffness matrices,
respectively, determining the compliance of the arm. In the
absence of an external force, (10) implies that the error ym

converges to zero at a rate specified by the matrices Mm,
Nm, and Km and the parameter εm, so that the arm settles
at its desired configuration captured by hdes

m .

C. Controller Design

The objective of the controller is to drive the locomotion
outputs (8) to zero and to establish the desired mechanical
impedance relationship (10). To achieve this, the outputs
(8) and (9) are augmented in a single output vector and
differentiated to expose the input/output relation[
ÿ`

ÿm

]
= L2

fh(x)+LgLfh(x)

[
u`

um

]
+LgeLfh(x)Fe , (11)

where h(x) := (hT
` (x), hT

m(x))T, g(x) := (g`(x), gm(x)),
and L2

fh, LgLfh and LgeLfh denote the Lie derivatives
of h along the corresponding vector fields; see [5, Section
B.1.5] for relevant definitions. Under the condition that the
decoupling matrix LgLfh is invertible and assuming that the
external force can be measured, the control law[

u`

um

]
= LgLfh(x)−1

([
v`(y`, ẏ`)

vm(ym, ẏm, Fe)

]
−L2

fh(x)−LgeLfh(x)Fe

) (12)

leads to the linear input/output relation[
ÿ`

ÿm

]
=

[
v`(y`, ẏ`)

vm(ym, ẏm, Fe)

]
, (13)

where v` and vm are auxiliary control variables. Selecting

v`(y`, ẏ`) = − 1

ε`
N`ẏ` −

1

ε2`
K`y` (14)

ensures that the output y` converges to zero at a rate
dependent on the positive definite matrices K`, N` and the
positive parameter ε`. Furthermore, choosing

vm(ym, ẏm, Fe) = M−1
m (Fe −

Nm

εm
ẏm −

Km

ε2m
ym) (15)

results in the desired impedance relationship (10). The sys-
tem Σ in closed loop with the control law (12) becomes

Σcl :

{
ẋ =fβcl(x)+gβcl(x)Fe, x /∈ S,

x+ = ∆(x−), x− ∈ S,
(16)

where fβcl, g
β
e,cl are defined accordingly. Note that these

vector fields depend on the parameter β of the correction
term hc of (8) that is updated at the beginning of each step.

IV. EFFECT OF EXTERNAL FORCE ON LOCOMOTION

This section discusses certain key properties of the closed-
loop system (16) that are important in realizing adaptable
locomotion in the presence of the interaction force.

A. Effect of External Force on Stepping Pattern

An important property of the controller of Section III
is that the step length and step width of the biped are
not affected by the external force. To see this, let q` :=
(q2, · · · , q9) denote the configuration of the legs excluding
the yaw angle q1. The locomotion output h` in (8) and
the height pv of the swing leg in (5) depend only on q`.



Since the correction output in (8) accounts for the induced
initial error by the interaction force and rejects it before
the robot completes a step, the solution of the equation
(h`(q

−
` , β), pv(q−` )) = (ĥ`(q

−
` ), pv(q−` )) = (0, 0) uniquely

determines the locomotion configuration q−` prior to impact.
As a result, the step length, step width and θ− which solely
depend on q−` , remain constant over different steps. The
importance of this observation lies in the fact that, as will be
shown in Section V, the adaptation mechanism that allows
the biped to follow the leader’s intention effectively modifies
the biped’s stride frequency and heading direction.

B. Effect of External Force on Symmetry under Yaw Rotation

A second property that is important – particularly in
steering – is the symmetry of the unforced Poincaré map
with respect to yaw rotations and the associated symmetry
breaking upon the application of an external force at the
biped’s end effector.

Consider the case where no external force is applied. The
unforced Poincaré map P : S → S transfers the state x[k]
at the k-th step one step ahead; i.e.

x[k + 1] = P (x[k]) . (17)

Since the control law (12) does not depend on the yaw angle
q1, [16, Proposition 1] implies that P can be decomposed as

P (x) =

[
q1 + P (q1)(x̃)

P̃ (x̃)

]
, (18)

where x̃ is the projection of x to its non-q1 part, i.e.
x̃ := (x2, . . . , x18), and P (q1) and P̃ are defined as in the
proof of [16, Proposition 1]. Equation (18) implies that the
unforced Poincaré map is equivariant3 under yaw rotations.
In words, if we perturb the nominal heading angle q∗1 by an
amount δq1, the biped will continue taking steps along the
new heading direction q∗1 + δq1.

It is important to emphasize that the presence of the
external force Fe breaks the symmetry discussed above. This
is because the term JE(q) in (3) depends on the yaw angle
q1. As a result, the application of Fe can be used to induce
turning on the biped, enabling the leader to change the
heading angle of the biped to a new desired one by applying a
suitable force. Note that once the biped settles at the desired
direction, then the external force is no longer required to
maintain the new direction. It should be mentioned here that
a similar conclusion does not hold for the case where the
leader wants to change the biped’s speed, which depends on
x̃. In this case, the leader needs to keep applying a force to
maintain the desired speed, since if the force is removed, the
exponential stability of the fixed point x̃∗ of P̃ will bring the
speed of the biped back to its nominal unforced value.

C. Effect of External Force on Zero Dynamics

This section provides insight about the response of the
biped to external forces by studying the zero dynamics. The

3Mathematically, if Ψg(x) = (q1 + g, x̃T)T, then P ◦ Ψg = Ψg ◦ P .

control law (12) renders the zero dynamics surface

Z := {x ∈ TQ | h`(q, β) = 0, Lfclh`(x, β) = 0}

attractive and invariant under the flow of the swing phase
dynamics and the impact map. Note that unlike the planar
case considered in [11], the motion of biped’s arm due
to impedance dynamics (10) does not break the hybrid
invariance of Z; for, the correction output hc accounts for
any initial error in the locomotion output (7) induced by the
arm’s motion, and rejects it before the next impact occurs. As
a result, a five-DOF Forced Hybrid Zero Dynamics (FHZD)
emerges from the closed loop dynamics (16). The FHZD is

Σz :

{
ż = fβz (z) + gβz (z)Fe, z /∈ S ∩ Z

z+ = ∆z(z−), z− ∈ S ∩ Z
, (19)

where z := (qT
z , q̇

T
z )T with qz := (q1, θ, q10, q11, q12) being

a valid set of coordinates on Z . In (19), fβz := fβcl|Z and
gβz := gβcl|Z are the restrictions on Z of the closed loop
dynamics (16), and ∆z := ∆|S∩Z . The explicit form of the
continuous-time part of the FHZD in (19) can be derived in
a similar manner as described in [6, Section III], with the
additional step of including the desired impedance dynamics
(10) in the zero dynamics. The details are provided in the
Appendix.

The FHZD (19) has important implications in a cooper-
ation scenario. First, it is clearly seen from (19) that the
evolution of the unactuated DOFs q1 and θ are affected
by the external force. Physically, this means that the biped
changes its heading angle as well as its speed in response
to the external force. Second, the dynamics of q1 and θ
in (19) are coupled, implying that a speed change in the
direction of motion of the biped can change the heading
angle as well. The choice of locomotion and manipulation
outputs play an important role in the dynamics of (19) and
influences this coupling behavior; see (27) in the Appendix.
Therefore, if a desired response to the external force is
sought, one can design the outputs accordingly; this topic
will be further discussed in Section V. Third, in the absence
of perturbations, the evolution of the biped can be obtained
by integration of the reduced system (19), significantly
reducing the computational time compared to integrating the
full-order system (16).

V. 3D STEERING TO A GOAL REGION VIA INTERACTION

In this section, details regarding the implementation of
the controller are discussed and the method is evaluated
in simulation to steer a 3D biped amidst obstacles in a
collaborative task.

A. Implementation Aspects

We begin by computing unforced walking motions by nu-
merically searching for suitable fixed points of the Poincaré
map (17) that satisfy

x∗ = P (x∗) . (20)

Beyond the periodicity constraint (20), additional constraints
related to actuator saturation, foot-ground clearance and



interaction, and other practical considerations similar to [5,
Section 3.2] can be incorporated in the optimization.

The existence of an external force applied at the end effec-
tor calls for additional specifications to be considered when
computing unforced periodic motions. For example, we have
computed unforced periodic gaits that are symmetric with
respect to the X-axis; see Fig. 1. However, upon application
of an external force Fe,x acting only along the X-axis, the
overall motion of the biped deviates from the X-direction.
This is not surprising as Fe,x affects the dynamics of the
heading angle q1 despite the fact that it is perfectly aligned
with the direction of the unforced motion; this is evident by
(27) in the Appendix. Clearly, this behavior is undesirable
in a cooperation task. It implies that if the leader intends
to accelerate or decelerate the biped along the direction of
motion, it will also need to apply excessive forces in the Y
direction to keep the biped walking straight. To reduce the
effect of Fe,x on heading we consider the cost function∣∣∣∂P (q1)(x)

∂Fe,x

∣∣∣
x=x∗

, (21)

in the optimization process associated with the computation
of fixed points; in (21), P (q1)(x) is the map defined in
(17). This way, the resulting periodic orbits exhibit smaller
deviations from the nominal direction when an external force
is applied.

B. Evaluation in Simulation

We now consider a scenario in which a leading collabora-
tor – possibly a human – intends to move an object with
the help of a bipedal robot to a desired location in the
workspace of Fig. 2(a). The leader plans an obstacle-free
trajectory pL(t) for the object so that all the specifications
of the task are fulfilled. The biped needs to adapt its motion
to the leader’s intended trajectory, the explicit form of which
is unknown. However, it turns out that the interaction force
developed as a result of the leader’s intentions can provide
sufficient information to steer the biped accordingly. In the
numerical implementation of this scenario, the impedance
parameters of the leader are selected to be KL = 10N/m
and NL = 2Ns/m, and the parameters of the arm impedance
controller are chosen as Mm = I3×3Kg, Km = 20I3×3N/m,
Nm = 4I3×3Ns/m, where I3×3 is the 3× 3 identity matrix,
and εm = 0.5. In the simulations that follow, care is taken
so that actuator saturation and friction cone limitations are
respected throughout the motion of the biped.

Figures 2(b) and 2(c) present the interaction force and
average speeds of the biped and the leader, respectively. As
expected, the biped perceives the leader’s acceleration as an
increase in the X component of the force, and its left turning
as an increase in the Y component; see Fig. 2(b). As the
biped turns, its average speed converges to that of the leader,
as shown in Fig. 2(c). After the narrow passage between the
two obstacles of Fig. 2(a), the biped is guided to walk with
the same speed and direction it started. As a result, the biped
converges to a new forced limit cycle that is almost identical
to the unforced one, as Fig. 2(d) and 2(e) show.
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Fig. 2. (a) Biped-leader cooperation in an environment with obstacles.
Intended trajectory of the leader is denoted as red line. (b) X component
(blue) and Y component (dashed red) of the interaction force. (c) The
intended average speed of leader (red) and average speed of biped (blue).
(d) Convergence of limit cycles in terms of θ and θ̇. (e) Convergence of
limit cycles in terms of q1 and q̇1. Black is the base (unforced) limit cycle,
red is the final forced limit cycle and gray correspond to transition.

As Fig. 2(d) shows, the range of values of θ remains the
same during the motion; on the other hand, the rate of change
θ̇ of θ differs. This was expected in view of the discussion
in Section IV-A, which indicates that the biped in closed
loop with the controller developed in Section III keeps its
stride length constant as its speed and heading angle change
in response to the interaction force. On the other hand, it
is shown in Fig. 2(e), that the interaction force changes the
evolution of both heading angle q1 and its derivative q̇1.

It is natural to ask under what conditions the biped adapts
its motion in response to the interaction force. Unlike the
planar case [11], we cannot derive such conditions analyt-
ically in the 3D case due to the high-dimensional FHZD
(19). Nevertheless, we observe in simulation that – similarly
to the planar case – the biped fails when the moment of
the interaction force around the stance ankle either prevents
the robot to complete a step, or results in a violation of
the actuation and ground contact constraints. The former
occurs when the leader’s speed is much lower than that of
the unforced motion of the biped or when the leader makes
sharp turns, while the latter failure happens when the leader’s



speed is much greater than that of the unforced motion.

VI. CONCLUSIONS

This paper presented a method that unifies locomotion
and manipulation controllers in a way that the motion of an
underactuated 3D biped can be guided by a collaborator that
physically interacts with it. The proposed approach couples
impedance control on the biped’s arm to appropriately handle
interaction forces, with position control on the biped’s legs
to ensure adaptation of the locomotion system under the
effect of interaction forces. It is shown that the biped adjusts
its stride frequency and heading angle in response to the
interaction forces. The results of this paper take a first step
toward the development of controllers for cooperative object
transportation tasks, in which a bipedal robot assists a human
to carry an object along a path that is enforced by the human.

APPENDIX

Let qz := (q1, θ, q10, q11, q12)T be the unactuated variables
of the stance leg together with the variables of the arm. Then,

q = τq

[
qz

qa

]
, (22)

where τq is a 12 × 12 invertible matrix. Computing q̈ from
(22) and substituting it in (3) gives

D(q)τq

[
q̈z

q̈a

]
+H(q, q̇) =

[
02×10

I10×10

]
u+ JT

E (q)Fe, (23)

where H(q, q̇) := C(q, q̇)q̇+G(q) and u := (uT
` , u

T
m)T. The

first two lines of (23) can be written as

D11(q)q̈z +D12(q)q̈a +H1(q, q̇) = JE,1(q)Fe , (24)

where D11 is the 2 × 5 upper left sub-matrix of D(q)τ ,
D12 is the 2 × 7 upper right sub-matrix of D(q)τ , and H1

and JE,1 denote the first two rows of H(q, q̇) and JT
E (q),

respectively. Considering that on the zero dynamics (8) is
identically zero, we have qa = h̄(θ, β) := hdes

` (θ)+hc(θ, β).
Then, the expressions for qa, q̇a and q̈a can be obtained, and
when substituted in (24) and using (22) result in

D11(qz)q̈z +D12(qz)
(∂h̄
∂θ
θ̈ +

∂2h̄

∂θ2
θ̇2
)

+H1(qz, q̇z)

= JE,1(qz)Fe ,
(25)

which are two out of the five equations needed to describe the
swing phase zero dynamics. The rest of the equations result
from the arm’s impedance dynamics. Note that (9) depends
on the arm configuration qm and the monotonic variable θ,
and hence is a function of qz. Obtaining ym, ẏm and ÿm from
(9) and substituting the results in (10) yields

Mm
∂hm

∂qz
q̈z +Mmη(qz, q̇z)q̇z +

Nm

εm

∂hm

∂qz
q̇z +

Km

ε2m
hm = Fe ,

(26)
where η(qz, q̇z) := d

dt (
∂hm(qz)
∂qz

). Combining (25) and (26),
the five DOF swing phase zero dynamics can be obtained as

Dz(qz)q̈z +Hz(qz, q̇z) = Jz(qz)Fe , (27)

where

Dz :=

[
D11(qz) +

[
02×1 D12(qz)∂h̄∂θ 02×3

]
Mm

∂hm

∂qz

]
,

Hz :=

[
H1(qz, q̇z) +D12(qz)∂

2h̄
∂θ2 θ̇

2

Mmη(qz, q̇z)q̇z + Nm

εm
∂hm

∂qz
q̇z + Km

ε2m
hm

]
,

Jz(qz) :=

[
JE,1(qz)

I3×3

]
.
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