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Abstract— This paper presents a framework for navigation
of 3D dynamically walking bipeds. The framework is based on
extracting gait primitives in the form of limit-cycle locomotion
behaviors, which are then composed by a higher-level planning
algorithm with the purpose of navigating the biped to a
goal location while avoiding obstacles. By formulating motion
planning as a discrete-time switched system with multiple
equilibria—each corresponding to a gait primitive—we pro-
vide analytical conditions that constrain the frequency of the
switching signal so that the biped is guaranteed to stably
execute a suggested plan. Effectively, these conditions distill
the stability limitations of the system dynamics in a form that
can be readily incorporated to the planning algorithm. We
demonstrate the feasibility of the method in the context of a
3D bipedal model, walking dynamically under the influence of
a Hybrid Zero Dynamics (HZD) controller. It is shown that the
dimensional reduction afforded by HZD greatly facilitates the
application of the method by allowing certificates of stability
for gait primitives using sums-of-squares programming.

I. INTRODUCTION

Navigation of dynamically walking1 bipeds amidst obsta-

cles entails two hierarchically organized components. At the

high level, a planner generates an obstacle-free path that

conforms to the geometry of the environment. At the low

level, a locomotion controller must execute the descending

plan, while ensuring stable operation of the platform. When

the high-level planning and low-level stability objectives are

treated in isolation, the platform may not be able to faithfully

execute the plan, or may fail due to instability. This paper

proposes a framework that integrates locomotion control with

motion planning to enable a 3D dynamically walking biped

navigate in an environment cluttered by obstacles.

Motion planning for legged systems has been studied

extensively in the context of humanoid robots walking under

the Zero Moment Point (ZMP) stability criterion. Owing

to the analytical nature of the ZMP, efficient planning

algorithms have been employed to compute motion plans

that comply with low-level ZMP stability requirements and

achieve desired high-level objectives in high-dimensional

spaces. The recent book [1] provides an extensive account

of various approaches for motion planning in the context

of humanoid robots, including footstep and whole-body

planning, and motion planning with manipulation constraints.

Based on novel formulations of such tasks as optimization

problems, [2] provides an integrated approach to locomotion
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1Here the term “dynamically walking” indicates limit-cycle walkers.

planning, estimation and control for humanoid robots, which

has been experimentally verified on the humanoid Atlas.

In stark contrast to ZMP-based humanoid robots, locomo-

tion control methods for dynamically walking bipeds have

been developed largely in isolation from high-level motion

planning objectives. Indeed, most of the existing literature on

dynamic walkers focuses on designing low-level controllers

for generating and stabilizing periodic motions either for pla-

nar [3]–[5] or 3D [6]–[9] bipeds, for incorporating interaction

forces [10]–[12], and for establishing robustness [13]–[15].

There are only very few works that explicitly take into

account high-level motion planning objectives—e.g., avoid

unsafe regions on the terrain or in the robot’s workspace—

for limit-cycle walkers. In the context of footstep planning,

[16] uses an energy-based planner to construct suitable

sequences of limit cycles to realize walking over known

uneven terrain for an underactuated planar biped. Empha-

sizing guaranteed performance, [17] proposed a method for

safety-critical footstep planning by combining state-based

constraints through quadratic programming with control Lya-

punov functions [5]. Beyond planar bipeds—to the best of

the authors’ knowledge—only [18] considers the problem

of navigating a 3D limit-cycle walker to a desired goal

location while avoiding obstacles. In [18], motion planning

is formulated as a switched system with multiple equilibria,

each corresponding to a limit-cycle walking behavior. The

existence of a lower bound on the dwell time of the switching

signal is established—but its value is estimated numericaly

using exhaustive simulations—so that stable composition of

motion primitives can be achieved.

In this paper, we treat motion planning as a switched

system, and we offer an analytical expression for the lower

bound on the dwell time that guarantees stable execution of

the suggested plan. Furthermore, we prove that the evolution

of the state of the switching system is confined within a com-

pact set, which can be explicitly characterized as the union

of sub-level sets of Lyapunov functions, each corresponding

to a gait primitive. The approach is implemented on an

underactuated 3D biped, and locally exponentially stable gait

primitives are extracted using Hybrid Zero Dynamics (HZD)

controllers. The dimensional reduction afforded by HZD

allows the estimation of the basin of attraction of the gait

primitives using sums-of-squares (SOS) techniques, which

facilitates the computation of the bound on the dwell time.

It is worth noting that the proposed approach does not depend

on the method used to design the underlying limit-cycle

motion primitives. Moreover, it can be used to plan motions

in other systems, which—like dynamically walking bipeds—

move through their environment via cyclic interactions.



II. A MODEL OF 3-D BIPEDAL WALKING

We consider a fairly generic model of a three-dimensional

(3-D) bipedal walker as shown in Fig. 1. The model is

composed of a torso and two identical legs, each connected

to the torso via a two degree-of-freedom (DOF) revolute hip

joint. The legs are composed of two links, the thigh and

the shin, which are connected through a one DOF revolute

knee joint. We assume that the stance foot acts as a pivot

with three rotational DOFs corresponding to the yaw q1,

pitch q2, and roll q3 angles; see Fig. 1. In total, during

the single support phase, the model has nine degrees of

freedom q := (q1, ..., q9)
T ∈ Q, where Q contains physically

reasonable configurations of the system. Seven actuators—

four located at the hip joints, two at the knee joints and one

at the roll joint of the foot—provide the input torques.

Due to the nontrivial length of the hip joint, the equations

of motion during the left and right leg support phases are

different. In what follows, we develop a model for the left

leg support phase; the equations for the right leg can be

derived in a similar manner. The dynamics of the biped in

the swing phase can be written as

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu , (1)

where D(q) is the mass matrix, C(q, q̇)q̇ contains the cen-

trifugal and Coriolis forces and G(q) contains the gravita-

tional forces. The matrix B distributes the inputs u to the

configuration variables q.

Defining x̂ := (qT, q̇T)T, the model can be written as

˙̂x = f(x̂) + g(x̂)u , (2)

where x̂ ∈ TQ :=
{

(qT, q̇T)T | q ∈ Q, q̇ ∈ R9
}

and the

vector fields f and g are defined accordingly.

The continuous evolution of the swing dynamics (2) is

interrupted when the swing leg hits the ground; i.e., when

the state crosses the surface

S := {x̂ ∈ TQ | pvfoot(q) = 0, ṗvfoot(x̂) < 0} , (3)

where pvfoot denotes the vertical position of the foot of the

swing leg. As in [8], the impact is assumed instantaneous

and purely plastic, and can be modeled as a discrete map

∆ : S → TQ, as

x̂+ = ∆(x̂−) . (4)

The derivation of the map ∆ also involves the transformation

of coordinates from left leg support to right leg support; see

[8] for more details.

III. GAIT PRIMITIVES

This section exploits the structure of the Poincaré map to

extract a family of exponentially stable gait primitives, which

are then concatenated by a planning algorithm to achieve

desired objectives, such as reaching a goal position in the

biped’s workspace while avoiding obstacles on the way.

We begin by assuming the availability of a family of

locally Lipschitz feedback control laws Γp : TQ → R7,

u = Γp(x̂) (5)
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Fig. 1. Robot model with a choice of generalized coordinates when
supported on left leg.

indexed by p ∈ P , where P is a finite index set corre-

sponding to controllers that enable straight line and turning

motions. Such controllers can be designed using a variety of

methods, including [6]–[9]; for concreteness, in Section V

below we will use HZD to design Γp. The dynamics of the

biped in closed loop with the control law (5) can be expressed

in the form of a system with impulse effects,

Σp :

{

˙̂x = fp(x̂), x̂ /∈ S

x̂+ = ∆(x̂−), x̂− ∈ S
, (6)

where fp(x̂) := f(x̂) + g(x̂)Γp(x̂), for p ∈ P .

Let ϕp(t, x̂0) be the maximal solution based on the initial

condition x̂0 ∈ TQ of the continuous-time part of the closed

loop system Σp defined by (6). The time-to-impact function

T̂I,p : TQ → R+ can then be defined as

T̂I,p(x̂) = inf{t ≥ 0 | pvfoot ◦ ϕp(t,∆(x̂)) = 0} . (7)

Note that, for each p ∈ P , the time-to-impact function (7)

is independent of the yaw angle, q1, since the height of the

swing foot pvfoot does not depend on q1.

To study periodic solutions of Σp, p ∈ P , we define the

Poincaré return map P̂p : S → S as

P̂p(x̂) := ϕp(T̂I,p(x̂),∆(x̂)) , (8)

that transfers the state x̂[k] one step ahead; i.e.

x̂[k + 1] = P̂p(x̂[k]) . (9)

The following Proposition is based on observations in [8],

and it shows that restricting the choice of feedback con-

trollers (5) so that they do not depend on the yaw angle q1
results in a symmetry property of the Poincaré map.

Proposition 1: Let q1 denote the yaw angle and x :=
(x̂2, . . . , x̂18)

T and define the group action

Ψg(x̂) = (q1 + g, xT)T . (10)

Then, if the control law (5) is independent of the yaw angle

q1, the corresponding Poincaré map P̂p is equivariant under

the action of Ψg, i.e.

P̂p ◦Ψg(x̂) = Ψg ◦ P̂p(x̂) . (11)



As a result, the Poincaré map can be written as

P̂p(x̂) =

[

q1 + P
(q1)
p (x)

Pp(x)

]

, (12)

where q1 + P
(q1)
p and Pp are the projections of P̂p onto q1

and x, respectively.

Proof: Equation (11) is proved in [8, Proposition 3].

For (12), note that for any x̂ = [q1, x
T]T, (10) and (11) imply

P̂p([q1, x
T]T) =P̂p ◦Ψq1([0, x

T]T) = Ψq1 ◦ P̂p([0, x
T]T)

=

[

q1 +Πq1 ◦ P̂p([0, x
T]T)

Πx ◦ P̂p([0, x
T]T)

]

for any arbitrary q1, where Πq1 and Πx project the state onto

its q1 and x components, respectively. Defining P
(q1)
p (x) :=

Πq1 ◦ P̂p([0, x
T]T) and Pp(x) := Πx ◦ P̂p([0, x

T]T), which

are independent of q1, completes the proof.

The structure of the Poincaré map established by Propo-

sition 1 allows the extraction of gait primitives suitable for

navigation purposes in workspaces cluttered by obstacles.

Intuitively, these gait primitives correspond to cyclic loco-

motion patterns—that is, limit cycles—which result in a net

change of the heading angle. In more detail, such motions

can be computed by requiring the condition

x∗
p = Pp(x

∗
p) , (13)

i.e., that x∗
p is a fixed point of Pp defined by the decomposi-

tion of the Poincaré map (12). A gait primitive can now be

defined as a pair Gp = {Pp, x
∗
p}. If all the eigenvalues of the

linearization Ap :=
∂Pp(x)

∂x

∣

∣

x=x∗

p

of Pp in (12) are located

within the unit disc centered at the origin, the fixed point x∗
p

is locally exponentially stable, and so is the corresponding

gait primitive Gp. The basin of attraction of the fixed point

x∗
p is defined as

BoA(x∗
p) =

{

x ∈ S | lim
k→∞

P k
p (x) = x∗

p

}

, (14)

where P k
p denotes the composition of Pp with itself k times

when it is defined. In Section V-C.1 below, we characterize

the basin of attraction associated with a fixed point x∗
p using

sums-of-squares programming. Finally, note that associated

with a gait primitive Gp is a change in the heading angle s,

which can be computed by

s = P (q1)
p (x∗

p) . (15)

IV. STABLE SWITCHING AMONG MULTIPLE EQUILIBRIA

In what follows, we consider a collection G = {Gp, p ∈
P} of locally exponentially stable gait primitives. Note that

G provides actions in the form of nominal walking arcs—as

will be defined in Section V-B below—to a planning algo-

rithm, which is tasked to output a suitable sequence of gait

primitives that achieve a desired objective. In this context,

the planner concatenates gait primitives in G according to a

switching signal σ : Z+ → P that maps the stride number

k to the corresponding gait primitive p = σ(k) that should

be executed in the current stride. This process gives rise to

a discrete-time switched system

x[k + 1] = Pσ(k)(x[k]) , (16)

which captures the dynamics of switching among gait prim-

itives in G. It is well known that switching among systems

that share a common exponentially stable equilibrium may

cause instability, and conditions to avoid such behaviors

have been established [19]. However, (16) differs from those

switched systems in that the individual maps {Pp, p ∈ P} do

not share a common equilibrium. Hence, one cannot expect

that the solution of (16) will converge to one of the equi-

librium points. The main result of this section is to provide

conditions that guarantee that the system’s solution will not

escape from a compact set that includes the equilibrium

points for any switching sequence the planner requires, as

long as this sequence respects a bound on the dwell time.

We work in an open connected set D ⊂ S over which Pp

is well defined for all p ∈ P . As above, let x∗
p be a fixed

point of Pp, and assume that x∗
p ∈ D for all p ∈ P ; that

is, D contains all the fixed points. Let σ : Z+ → P be a

switching signal with p = σ(k), and let {k1, k2, ...} be the

corresponding switching times. The dwell time Nd ≥ 1 is an

integer representing the minimum number of steps between

two successive switches in σ; that is, σ(ki + k) = σ(ki) for

all k < Nd.

Definition 1: A continuous function Vp : D → R is an

exponential Lyapunov function, if for x ∈ D

χp,1(‖x− x∗
p‖) ≤ Vp(x) ≤ χp,2(‖x− x∗

p‖) , (17)

Vp(x[k + 1]) ≤ ǫVp(x[k]) , (18)

where χp,1, χp,2 are class-K functions and 0 < ǫ < 1 .

Following the set constructions in [20], we introduce

subsets of D, which are essential in presenting the main result

of this section. For each p ∈ P , let

Np(κ) := {x ∈ D | Vp(x) ≤ κ} , (19)

and let the union of these sets over all p ∈ P be

N (κ) :=
⋃

p∈P

Np(κ) , (20)

which is not necessarily connected. Next, define

ωp(κ) := max
x∈N (κ)

Vp(x) , (21)

and let ωmax(κ) and ωmin(κ) be the maximum and minimum

of ωp(κ) over the finite index set P , respectively. Let

Mp(κ) := {x ∈ D | Vp(x) ≤ ωp(κ)} . (22)

We complete our constructions by defining

M(κ) :=
⋃

p∈P

Mp(κ) , M(κ) :=
⋂

p∈P

Mp(κ) . (23)

Note that

N (κ) ⊂ M(κ) , (24)

and that the set M(κ) is connected.



With these definitions, we are ready to state the main result

of this section, which guarantees that a solution of (16) that

starts in M(κ) will stay in M(κ) for all future time steps,

provided that a bound on the dwell time of the switching

signal σ is respected.

Theorem 1: Consider (16) and assume that for each p =
σ(k) ∈ P there exists a function Vp : D → R that satisfies

the conditions of Definition 1. Let µ(κ) > 1 be such that

Vpi
(x)

Vpj
(x)

≤ µ(κ), ∀pi, pj ∈ P , ∀x ∈ D \ N (κ) . (25)

Assume further that the dwell time Nd ∈ Z+ of the switching

signal σ satisfies

Nd ≥
log

(

µ(κ)ωmax(κ)
ωmin(κ)

)

log(1/ǫ)
. (26)

Then, for every initial condition in the set M(κ), the solution

of (16) remains in M(κ).
Proof: Consider an arbitrary switching signal σ :

Z+ → P with switching times {k1, k2, . . .}. Without loss

of generality, assume that the system starts at k = 0 and let

x[0] ∈ M(κ). This implies that x[0] ∈ Mp(κ) for all p ∈ P
so that x[0] ∈ Mσ(0)(κ). Thus,

Vσ(0)(x[0]) ≤ ωσ(0)(κ) , (27)

and by (18), Vσ(0)(x[k]) ≤ ωσ(0)(κ) for all 0 ≤ k ≤ k1,

implying that x[k] ∈ Mσ(0)(κ) ⊂ M(κ) for all 0 ≤ k ≤ k1.

Note that, at the switching time k1, the state x[k1] ∈
M(κ), and we distinguish the following cases:

Case I: x[k1] ∈ M(κ). Then, arguing as above we have that

Vσ(k1)(x[k1]) ≤ ωσ(k1)(κ), and thus x[k] ∈ Mσ(k1)(κ) ⊂
M(κ) over the interval k1 ≤ k ≤ k2.

Case II: x[k1] ∈ M(κ) \ M(κ). In fact, we will show

by contradiction that this case is not possible due to the

condition (26) imposed on the dwell time. By (24), N (κ) ⊂
M(κ) and thus the fact that x[k1] /∈ M(κ) implies that

x[k1] /∈ N (κ). Then, (25) can be used to obtain Vp(x[k1]) ≤
µVσ(0)(x[k1]) for all p ∈ P , which by (18) results in

Vp(x[k1]) ≤ µǫk1Vσ(0)(x[0]) for all p ∈ P . Then, since

k1 ≥ Nd by the definition of the dwell time, we obtain

Vp(x[k1]) ≤ µǫNdVσ(0)(x[0]) ∀p ∈ P . (28)

In view of (26), we have µǫNd ≤ ωmin(κ)/ωmax(κ), and by

using (27) and (28) we obtain

Vp(x[k1]) ≤
ωmin(κ)

ωmax(κ)
ωσ(0)(κ) ≤ ωmin(κ) ∀p ∈ P , (29)

which implies that for any p ∈ P that is “switched in” at

k1, x[k1] ∈ Mp(κ). Thus, x[k1] ∈ M(κ), which contradicts

the initial assumption that x[k1] ∈ M(κ)\M(κ), essentially

guaranteeing that Case II does not emerge.

Hence, for any x[0] ∈ M(κ), we have shown that x[k] ∈
M(κ) over the interval 0 ≤ k ≤ k1. Then, the constraint

(26) on the dwell time ensures that x[k1] ∈ M(κ) so that

x[k] ∈ M(κ) over the interval k1 ≤ k ≤ k2. Propagating

this construction to future time steps proves the result.

An immediate consequence of Theorem 1 is the following

Corollary that will be useful for our planning purposes.

Corollary 1: Under the assumptions of Theorem 1, for

every initial condition in the set N (κ), the solution of (16)

will remain in M(κ) for all future times.

Theorem 1 has some important implications for planning.

First, it provides a constraint on the switching signal that

essentially captures the limitations imposed by the dynamics

of the system as it switches among different gait primitives.

Second, the constraint (26) is provided in closed form, and

can easily be incorporated in the planning algorithm so that

descending commands from the high-level planner respect

the dynamics of the low-level platform. Third, Theorem 1

guarantees that the evolution of the state of (16) remains

within the set M(κ) defined by (23), the size of which can

be adjusted through the parameter κ. Reducing the size of

M(κ) ensures smaller deviations from the nominal plan,

at the expense of a larger lower bound on the dwell-time

(26), which in turn reduces the flexibility of the planner in

providing a path that respects the geometry of the workspace.

V. HZD BASED 3-D BIPED EXAMPLE

This section explores some of the implications of Theo-

rem 1 in the context of the bipedal model of Fig. 1 walking

under the influence of an HZD control law. It should be

emphasized that the dimensional reduction afforded by HZD,

greatly facilitates the set constructions of Theorem 1 and the

verification of the basins of attraction of the corresponding

gait primitives via established SOS techniques.

A. Controller Design

The controller is developed within the HZD framework as

in [21]; thus the exposition will be terse. To the continuous

dynamics (2), associate the output functions

y = h(q) := qa − hd(θ(q)) , (30)

where qa := (q3, . . . , q9)
T includes the controlled variables

and hd denotes the desired evolution as a function of the

monotonic quantity θ(q) = −q2 − q4/2, which corresponds

to the angle of the line connecting the foot of the support leg

with the corresponding hip joint. As in [21, Section IV-B],

hd is designed using Bezier polynomials.

As in [21, Section V-A], we augment the output (30) with

correction polynomials hc, i.e.,

ȳ = h̄(q, yi, ẏi) := qa − hd(θ)− hc(θ, yi, ẏi) , (31)

where yi and ẏi are the values of the (uncorrected) output

(30) at the beginning of the step. The coefficients of the

correction polynomials hc are chosen so that they smoothly

reject the initial error with respect to the (uncorrected) output

(30) by the middle of the step; see [21] for details.

To induce turning on a straight walking gait, we augment

the output (31) with polynomials hs, i.e.,

ỹ = h̃p(q, yi, ẏi) := qa − hd(θ)− hc(θ, yi, ẏi)− hs(θ, βp) ,
(32)

where βp is the vector parameters determined in a way that

does not interfere with the design of hc that renders the zero



dynamics surface Z associated with the original output (30)

hybrid invariant; see [21, Section VII.A] for more details.

Then, selecting the control inputs according to

u = Γp(x) := LgLf h̃p(x)
−1

[

υ(ỹ, ˙̃y)− L2
f h̃p(x)

]

, (33)

where υ is an auxiliary controller that renders the surface

Z̃p := {(q, q̇) ∈ TQ | h̃p(q, yi, ẏi) = 0, Lf h̃(q, q̇, yi, ẏi) = 0}

attractive and hybrid invariant under the flow of the system

Σp defined by (6); the controller υ can be designed as in [3]

or [5], for example. It is important to emphasize that the

control law (33) does not depend on the yaw angle q1 due

to the fact that the output (32) is independent of q1 and

by [8, Proposition 1] the dynamics is invariant under yaw

rotations. Then, by Proposition 1 the closed-loop Poincaré

map is equivariant under yaw rotations.

The hybrid invariance of Z̃p ensures that the restriction

ρ̂p := P̂p|S∩Z̃p
of the Poincaré map P̂p defined by (8) on

the surface S ∩ Z̃p is well defined, and that ẑ = (q1, q̇1, θ̇)
T

is a valid set of coordinates on S ∩ Z̃p. Furthermore, as

a result of equivariance the restricted Poincaré map can be

decomposed as
[

q1[k + 1]
z[k + 1]

]

=

[

q1[k] + ρ
(q1)
p (z[k])

ρp(z[k])

]

=: ρ̂p(ẑ[k]) . (34)

where z = (q̇1, θ̇)
T. Before we turn our attention to comput-

ing gait primitives, the following remark is in order.

Remark 1: We will assume that switchings among primi-

tives occur only at the beginning of a stride. This assumption

is typical in motion planning scenarios [18], and, while it

does not significantly restrict the flexibility of the planner,

it allows us to take advantage of the dimensional reduction

afforded by HZD in a way that greatly simplifies the planning

problem. In this case, switching from one primitive to

another excites the uncorrected outputs (30) only when the

stride begins; i.e., yi and ẏi are non-zero. The correction

polynomials hc in (32) account for this excitation, and, by

construction, they ensure that after the middle of the stride,

the surface Z̃p coincides with the zero dynamics surface Z
associated with the original output (30). Hence, at the end

of the stride, the state is on S ∩ Z̃p = S ∩ Z , independent

of the perturbation introduced by the switching. As a result,

HZD greatly facilitates planning by ensuring that, despite

switching, the discrete evolution of the system always occurs

on S ∩ Z , allowing the use of the restricted Poincaré map

(34) for planning.

B. Generating Gait Primitives

A number of gait primitives corresponding to walking

straight and turning motions can be produced using the

controller described above; Fig. 2 shows nominal walking

arcs for a family of such motions. Note that a turning

primitive associated with a net change s in the heading angle

is generated by seeking for the fixed point x∗
p and the pa-

rameters βp that satisfy (13) and (15). Additional constraints

related to actuator limitations, foot-ground interaction and
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Fig. 2. Nominal walking arcs for family of gait primitives. The number on
each arc shows the change in heading. Blue corresponds to turning when
support is on the left leg and red when support is on the right leg.

other specifications can be incorporated in the computation

of the fixed points as in [3, Section 3.2] and [21].

For the purpose of illustrating the method, we choose

a gait basis set G = {G0,G1,G2}, consisting of three

gait primitives; namely, G0 for straight line motion, G1 for

clockwise (CW) turning by 45o, and G2 for counterclockwise

turning by 45o. The three gait primitives correspond to strides

that begin with the left leg providing support. The sharp

turning primitives in G enable the biped to navigate through

tight environments as will be shown in Section V-D. Each

gait primitive produces a nominal walking arc—see Fig. 2 for

examples of such arcs—which is characterized by a triplet

(Lcm, scm, s), where Lcm and scm denote the length and

angle of the COM displacement vector, and s is the change

in heading angle; for the gait primitives in G, these quantities

are given in Table I. A planning algorithm can concatenate

these nominal walking arcs from a discrete set available to it

to construct a path, as will be shown in Section V-D below.

TABLE I

SELECTED NOMINAL WALKING ARCS

Primitive Lcm [m] scm [deg] s [deg]

Straight 0.6789 0 0
CW 0.6710 -25.05 -45
CCW 0.6558 26.21 45

C. Stable Composition of Gait Primitives

In this section we take advantage of the dimensional

reduction afforded by the HZD method to estimate the basin

of attraction of the gait primitives in G using SOS techniques,

and we use these results to facilitate the construction of the

sets involved in Theorem 1, which is then applied to establish

stable motion planning.

1) Estimation of Basin of Attraction: By Remark 1,

the systems’s nominal evolution is perturbed only at the

beginning of a stride, thereby resulting in the reduced-order

Poincaré map ρ̂p defined by (34). Then, to estimate the basin



of attraction associated with a gait primitive, we will restrict

our attention to the corresponding reduced-order system

z[k + 1] = ρp(z[k]) , (35)

which is two dimensional. Below we describe the process

for one such system; i.e., for a fixed p. For simplicity, the

corresponding fixed point is translated to the origin.

We begin by numerically estimating the domain of def-

inition of ρp. This is achieved by radially propagating a

closed disc around the origin and checking whether ρp is

defined on sampled points on its boundary. We densely repeat

this process until we obtain the maximum radius rp that

corresponds to the ball Brp(0) over which ρp is well defined.

Next, we turn our attention to estimating the basin of

attraction of the equilibrium point of (35). Our estimate will

have the form of a sub-level set {z ∈ Brp(0) | Vp(z) ≤ η} of

a quadratic Lyapunov function Vp(z) := zTSpz, where Sp is

a positive definite matrix that solves the discrete Lyapunov

equation of the linearization associated with (35). To check

(18), we formulate a SOS feasibility program as in [22]

max η

s.t. η < λmin(Sp)r
2
p

bp(z) is SOS

ǫVp(z[k])− Vp(z[k + 1])− bp(z[k])(η − Vp(z[k])) is SOS

where rp is the radius of the estimate of the domain of

definition, λmin(Sp) is the minimum eigenvalue of Sp, and

bp(z) is a positive definite polynomial of z; see [22]. The

first condition ensures that the resulting estimate of the basin

of attraction is entirely contained in the domain of definition.

Note that ǫ is the rate of convergence, which according to

the constructions of Theorem 1 will be the same for each

system p. Finally, as in [22, Section 3.1.1] we approximate

ρp in the neighborhood of the fixed point using Taylor series

up to second-order terms to obtain a polynomial system as

the SOS algorithm requires.
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Fig. 3. Estimates of the basin of attraction for each of the gait primitives
in G (dashed ellipses), and computation of M(κ) (union of solid ellipses),
which is entirely inside the intersection of the basin of attractions. The colors
blue, red and green correspond to the primitives G0, G1 and G2 respectively.
Note that the fixed points of G1 and G2 and their corresponding M(κ) sets

are almost coinciding. The set M(κ) of (23) corresponds to κ = 0.0002
resulting in the dwell time Nd = 1.

A sequence of SOS feasibility programs is then executed

to obtain ηmax, beyond which the process fails to give a

feasible solution. The procedure is carried out individually

for all three motion primitives in G, and the outcome is

η0 = 0.11, η1 = 0.15 and η2 = 0.08 corresponding to G0,

G1, G2, respectively. The resulting estimates of the basins of

attraction are shown as dashed ellipses in Fig. 3. Clearly, all

the fixed points lie in the intersection of basins of attraction.

2) Computation of Minimum Dwell Time for Stability:

Here we apply Theorem 1 to ensure that the switching

frequency among the gait primitives guarantees that the

evolution of the switched system remains within the desired

safe region M(κ). By the SOS program, it has been verified

that the quadratic functions Vp(z) := zTSpz satisfy the

conditions in Definition 1 for all the gait primitives p with

the same value of ǫ = 0.12. To provide the planner with

enhanced flexibility, it is desirable to have the ability to

switch at every stride, implying that the desired value of

the lower bound on the dwell time is Nd = 1. To determine

if this dwell time is feasible, we must verify that, given ǫ =
0.12 from the SOS program of Section V-C.1, there exists a

κ for which the conditions of Theorem 1 are satisfied. This

can be done by numerically computing ωmax(κ), ωmin(κ)
using (21), and µ(κ) using (25) for a given κ. Then, we

verify that (26) is satisfied by Nd = 1, implying that if the

system starts in the set N (κ) defined by (20), its solution

never escapes from M(κ), which corresponds to the union

of the solid ellipses in Fig. 3. In the example shown in Fig. 3,

κ = 0.0002.

D. Path Planning

For the purpose of illustration, we consider the environ-

ments of Fig. 4, in which the bipedal model of Fig. 1 starts at

an initial position and is required to reach the designated goal

while avoiding obstacles in between. To obtain an obstacle-

free path, we implement a Rapidly-exploring Random Tree

(RRT) [23]. Based on the discussion above, the planner is

allowed to switch primitives at every stride. With this a

priori knowledge, the RRT planner constructs a nominal path,

shown by the red circles in Fig. 4. It can be seen that in both

environments the biped is able to closely follow the path and

approach the goal without hitting the obstacles.

The environment shown in Fig. 4(a) is relatively tight

given the dimensions of the biped. However, due to the

enhanced flexibility offered to the planner by the sharp

turning primitives and by the ability to switch at every stride,

the biped reaches the goal in 24 strides with a small drifting

error, approximately equal to 6.3cm. In the environment

shown in Fig. 4(b), the biped takes 90 strides to reach

the goal, and the final error is larger, approximately equal

to 1.20m. Yet, this represents a considerable improvement

with respect to [18], in which the biped drifts 2.59m away

from the goal by the end of the plan. Most important,

the analytically tractable procedure offered by Theorem 1

and the dimensional reduction afforded by HZD couple the

relevant parameters ǫ and κ in an explicit way, which can be

used to quantify the interplay between the geometry of the
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Fig. 4. Two walking environments. The nominal planned strides are shown as red circles and the simulated biped steps are indicated by blue lines. In
the environment (a), the biped takes 24 strides to reach the goal (marked by black rectangle) and the final drifting error is 6.3 cm. In the environment (b),
the biped takes 90 strides to reach the goal and the final error is 1.20 m.

environment and the error in the execution of a plan. This is

the subject of ongoing work.

VI. CONCLUSION

This paper presents a framework for navigation of a 3D

dynamically walking biped that offers analytically tractable

stability guarantees. Gait primitives in the form of limit

cycles are composed by a planning algorithm in a way that

ensures stable operation under constrained switching that

respects the biped’s dynamics. The constraint is expressed

analytically in the form of a bound on the dwell time of

the switching signal. We demonstrate the method on a biped

walking in closed loop with a HZD controller, and highlight

the advantages of the dimensional reduction provided by

HZD in establishing certificates of stability of the motion

primitives using SOS programming. This work presents a

step toward bridging the gap between high-level motion

planning algorithms and low-level locomotion controllers in

the context of dynamically walking bipeds.
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